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ABSTRACT Cyber-physical systems revolve around context awareness, empowering objective-oriented
services, products and operations based on real data. Self-aware and self-control systems are core elements
in the Industry 4.0 framework towards self-sustainable adaptive manufacturing and personalized services.
This development is witnessed by the context-aware pervasive assistance to users and machines in decisions
making process for optimizing product performance and economic yield. While integration of the virtual
and the physical world entails smart sensors communication and complex data analytics, it relies on artificial
intelligence tools to manage process operations. The objective of the article is to create awareness that sys-
tems & control community must address theoretical and practical aspects from a larger perspective. Context
aware control is emerging as a natural solution to maximize the use of available sensing instrumentation
and the relatively low cost data logging, i.e. an important source for extracting information, interpreting and
using context information and adapt its functionality to the current context of use. This article presents a
concise overview of applications where context aware systems and control methodologies are relevant in
the seven societal challenges acknowledged by European policy-makers: Digital Society; Food; Health and
Well-Being; Smart Resource Management; Urban Planning, Mobility Dynamics and Logistics; New Energy
Demand and Delivery; and Society.

INDEX TERMS Self-sustainability, global economy, intelligent manufacturing systems, self-optimization,
context estimation, adaptive control, context aware control, event-based control, deep learning, random
forest, iterative learning control, digital twin, cyber physical systems, societal challenges.

I. INTRODUCTION
Doubtless, the research community embraces vigorously the
grand challenges envisioned in [1] with core elements from
systems and control engineering. In a world where knowledge
represents capacity and functionality, systems and control
aspects play an essential role while emerging towards fac-
tories and machines-of-the-future along with human-in-the-
loop technology. Being context-aware became an essential
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feature in all the knowledge-driven processes. For instance
the traditional power grid is being transformed into a smart
grid, which provides more secure and dependable electrical
service. In fact, it is supported by two-way communica-
tion between the utility and the electricity consumer. Here,
the need arises of a context-aware system for the challenges
of dynamics in the network [2]–[4]. Similarly, context-aware
is present in the development of the aerospace industry [5].
Meanwhile, the fourth industrial revolution (Industry 4.0)
allows prediction of outcomes by the complex awareness of
the process in time, thus exploiting all data, and emerging
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to an optimal solution based on advanced computing [6].
Industry 4.0 is an umbrella concept for mainstream tech-
nologies, e.g. Cyber Physical Systems (CPSs), Internet of
Things (IoT), Cloud computing, Big Data analytics, Aug-
mented Reality (AR) [7]. There have been already derived
several extensions, namely Care 4.0 [8], Health 4.0 [9],
Operator 4.0 [10] and others are emerging: Pharma 4.0 [11].
It only shows that automation and data exchange are critical
elements to enable personalized services and adapted systems
to user’s preferences and context information [12].

It is important to notice that a total of 259 journals
have been found by means of computerized search of the
topic ‘‘context-aware’’ control. The search was performed in
ISI Web of Science database and narrowed based on the
selection criteria. A diagram of the steps followed to select
the articles is presented in Fig.1.

FIGURE 1. ISI Web of Science results for the search descriptor
‘‘context-aware control’’.

The articles resulted in this search and considered for
review include the applications addressed in this article
such as: Food Supply Chain, Urban Planning, New Energy
Demand, Health and Well-Being, etc. When analyzing the
results by publication years (for the last 5 years) an increasing
trend in number of publications is observed. Hence, there is
an increased interest of the research community with respect
to the potential of context aware systems. An analysis of the
results by the research area has been also performed and the
results are shown in Fig.2.

Context-aware control systems (CACS) are proactive inte-
grated structures that are able to action in an appropriate
manner in real-time changing environment. This human-free
adaptation increases usability and effectiveness by taking the
monitored context into account.

A feature of CPSs is to combine context awareness, intel-
ligent control and the use of a digital twin to consider
humans as system elements and integrate them according
to availability and skills [13]. CPS are characterized by the
interaction between physical components with the digital
world through embedded computers and networks in order to
control the physical processes, based on feedback with con-
textual data [14]. Some examples are manufacturing plants,
drone swarms, buildings with advanced HVAC controls and
autonomous connected cars [15], [16]. CPSs make possible

FIGURE 2. Classification of articles by the research areas, as resulted
from ISI Web of Science search.

smart factories, where context-aware supports users or plants
in taking decisions in real time [12], [17]. The intensive
connection of software with the surrounding physical world
enables CPSs to operate in different ways that can continu-
ously change with context [7].

The main contribution of this survey is the integration of
emerging control methodologies for context aware systems
and cyber physical systems. The challenges enforced by the
digital, heterogeneous nature of CPSs are described from
the pointview of control objective planning and optimization.
This article uses the classification declared at European level
for thematic research areas into seven prioritized societal
challenges [18], [19]. The objective of the article is to create
awareness that systems & control community must address
theoretical and practical aspects from a different perspec-
tive. Often, the control perspective is neglected and only the
systems part is addressed, relying on lower loop control to
resolve adjacent problems. However, as pointed out in this
article, the control is a much needed and integrated part of
the design as a global self-sustainable process.

The article is structured as follows. Notable survey articles
for defining context awareness challenges and applications
are summarized in the next section. Third section introduces
the definitions and life cycle of context aware systems, along
with suitable emerging control methodologies. This is the
basis framework for the next section. The fourth section
presents the context aware systems and controls classified in
the seven societal challenges and referred with recent publi-
cations. A final section addresses the enabled opportunities
for research.

II. PRIOR SURVEY LITERATURE
The concept of context aware systems has been reviewed
and classified in the last decade, with selected notable works
given in chronological order in Table 1.
While the earlier study of basic context-aware middle-

ware and frameworks is detailed in [20], an updated survey
on context-aware middleware architectures including context
modeling and context reasoning is given in [25]. This survey
is useful for finding the development tendency of the middle-
ware proposals that try to overcome the challenge to provide
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TABLE 1. Main surveys about context-aware systems.

an efficient solution for an increased usability of context.
Technical considerations for context aware middleware and
different architectures were analyzed and compared, reveal-
ing that there is no context aware middleware architecture
suitable for all settings.

From the viewpoint of smart learning environments for
CAS, mobile learning environment systems and approaches
are discussed in [23] based on two main issues in design-
ing adaptive and personalized mobile learning CAS. These
are the learner’s contextual information and the type of
adaptations made available by the previous information.
Similar, context awareness in mobile computing is reviewed
in [24], including basic design principles and security issues
in context-aware mobile computing. Moreover, data sharing
within a population has offering the opportunity for mobile
crowd sensing, that is surveyed in [28] from three view-
points of concepts, context-awareness, and functionalities.
These are the main steps for specifying a computer sys-
tems, going from general specifications to context-awareness
related non-functional requirements and finally to functional
ones. Finally, the survey includes discussion on the results
obtained and future directions of research. In addition, shift-
ing from mobile learning to its expansion, a more recent
overview of context-aware ubiquitous learning environment
systems and approaches is presented by [27]. During the
rapid development of ubiquitous computing, this survey is
mainly concerned with ubiquitous learning because it is
the intelligent learning environment achieved by context-
awareness. Beside presentation of smart learning environ-
ments, the research challenges and future research directions
are described.

A classification framework is given in [21] and categorizes
CASs in terms of a five-layering architecture: concept and
research layer, network layer, middleware layer, application
layer and user infrastructure layer. By contrast, another clas-
sification for context-aware methodologies and solutions is
suggested in [22], but the focus is on the most appropriate
context management categories for service engineering. Cen-
tering on the benefits brought by the decoupling of the service
logic from the context handling layer, three approaches have
been considered as solutions: source code level handling,
model-based and message interception.

The analysis of context concepts and CAS’s features is
included in a more generalized survey in [26], address-
ing the main challenges and possible research directions.

The demands of CAS techniques are highlighted for the most
common stages of a development process: requirements elic-
itation, analysis & design, implementation and deployment
and maintenance. Therefore, the unification of different tech-
niques from literature into methodologies that can be used for
CAS development is further done by assessing experts opin-
ion and needs through a questionnaire. The literature review
shows the difference in methodologies from the conventional
development, with the focus on better fitting of the needs of
both CAS creation and community.

Finally, a literature analysis featuring the basic CAS
components (modelling, organization and middleware) is
summarized in [29]. Various context-aware ecosystems and
middleware from the literature are discussed with focus on
the function of the aforementioned building components.
Such that, the contribution of the latter survey supports
the knowledge needed by a newcomer of the basic com-
ponents required and essential to develop and implement a
robust CAS. However, from the above referenced list, con-
taining recent surveys of context aware system operation,
the control related problems are neglected. We will address
this issue in section IV.

III. CONTEXT-AWARENESS
Several definitions of context are provided in the ubiquitous
computing literature [14]. Closer definitions to the opera-
tional aspect of a dynamic process are presenting the con-
text as a changing execution environment or as physical and
conceptual states of interest for an entity. Interactive sys-
tems as CASs require different modalities of communication
between different components, including the human-in-the-
loop element. An autonomous self-aware system is reducing
the workload of the users, allowing them to focus their atten-
tion on high level critical decision policies. The final decision
maker for the system’s action is the user operating in different
situations, after the context estimation updates provided by
the CAS.

Context awareness is characterized by fundamental capa-
bilities of sensing context information (including processing)
and presenting them to the general decision making element.
The key of a CAS consists on presenting only the contextual
information in the form needed by the application, without
the details of the sensing system [30]. The operation of
CA systems requires four main steps for context information
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management [31], as presented in Fig. 3. More information
about of each step for context information management is
presented in appendix.

FIGURE 3. Life-cycle of context-aware systems.

Nowadays, context awareness is integrated in CPSs that
pervade diverse sectors of the physical world. CAS impact
applications where context-based adaptation of tasks and
decisions are highly required [20]. This feedback is provided
by adequately testing and/or sensing the environment. Over-
all, every context-aware application is developed for address-
ing three fundamental components: i) context acquisition
(using sensors for collecting low-level contextual informa-
tion); ii) processing (applying reasoning methods for obtain-
ing high-level contextual information); iii) acting (automatic
execution of services and actions after context detection) [32].
To summarize, insight into the context of operation brings
added value for self-adaptation and self-optimization. A con-
ceptual view is given in Fig. 4. As observed earlier, the control
specific adaptation is intrinsic in the global operation of the
process. Notice the flow of information is still uni-directional,
as with classical operations approach. Ideally, the information
flow would be horizontal/vertical throughout all levels of
the process. Later on in this article, we propose such an
architecture.

IV. RELEVANT CONTEXT AWARE CONTROL
METHODOLOGIES
The awareness feature of CPS systems can be exploited
to create dedicated decision making strategies, relevant for
the present context. There are several control methodologies
which appear as natural solutions to the management of
CASs. Pairing a context aware solution with a CAS system
creates a Context Aware Control Systems, denoted further by
the CACS abbreviation. These type of systems have intrinsic
features that resonate with contextual paradigms. This section
brings forward most notable articles and reviews with highly
relevant control methodologies. The concept of context aware
control strategy is illustrated in Fig.5. The context awareness
core element of the methodology involves a mapping of
the dynamic CPS system in various conditions. This can be
apriori calculated/estimated/inferred for different objectives,
which may be enabled depending on the current situation of
the process and its environmental/operating conditions.

In a CACS methodology one may distinguish three phases
described hereafter.
Phase 1: For each objective (e.g. safety,maintenance, nom-

inal, high throughput operations) a context map is calculated.
This takes into account the manipulated and controlled vari-
ables and can be done from regression data. As a result, a set
of distribution of pairs of input/output variables is obtained.
Some of them deliver good performance for that specific
objective (i.e. green bullets) and some other less (e.g. orange
bullets). Other are to be avoided (e.g. red bullets). The result
is a database of maps for different envisaged objectives.
Phase 2:Once thesemaps are available, the process is eval-

uated online with visual feedback information. The analysis
of the visual feedback will identify events which will have as
a result an output moving from green bullet area to a lower
performance are or forbidden zone. If this is detected, then
the event-based controller/formalism is activated.
Phase 3: For each context map and objective, a set of

controller parameters are apriori available (e.g. updated from
prior data). Once a trigger comes from Phase 2, the context is
evaluated and the objective is prioritized to perform the best
next thing in order to bring the process back to green bullet
operation.
Example: if an instrumentation failure is present, the green

bullet is no longer achievable, and the context map to be
further used for decision-making process should be the one
for safety or for maintenance operation conditions.

We summarize hereafter the control strategies in decreas-
ing order of their current utility and relevance.

The control strategies with reasoning closer to context
aware systems are the iterative learning control (ILC)
[33] and reinforcement learning (RL) [34], both based on
learning from repetition to repetition or self-taught without
intervention from an expert control engineer. For instance,
a data-driven CPS control problem of with communication
faults on multiple channels is presented in [35]. To resolve
it, a watermark-based anomaly detector and a learning-based
switched control policy are proposed. Under this cooperation
the reliability of the systems under the faults was guaranteed.
As with all CPSs, data feedback especially big data, are at
the core features, demanding suitable filtering techniques for
extracting new, useful, learning-worth information from the
environment. Both methods use a reward system to penalize
or augment the value of actions in the decision making pro-
cess. Of special interest are those systems demanding optimal
control in presence of nonlinear, possibly stochastic dynamics
with high level of uncertainty. While their relevance to CACS
for CPSs is unarguable, the stability of such control strategies
remains much of an open question.

Event-based control is an emerging control algorithm
designed to take action at irregular, independent times during
the operation of the process [36]. In this approach, the con-
troller is apriori defined or onset tuned to fulfill a preset
goal. The controller can be a switching function between
apriori calculated controller parameters. These controller
settings are apriori computed based on various predefined

VOLUME 8, 2020 215553



R. Cajo et al.: CACSs: An Engineering Applications Perspective

FIGURE 4. Schematic representation of context-aware systems operation mode.

FIGURE 5. Illustrative concept of context aware control system with prioritized multi-objective optimization.

contexts - this reduces significantly the real time compu-
tational costs making it a viable solution for fast acting
systems [37]. An application based on event-triggered robust
tracking control method for a one degree of freedom (DOF)
link manipulator is given in [38]. This method is in the form
of discrete-time, and only uses the sampled-data position
signal, thereby being more suitable for practical applications.
The simulation results demonstrate the feasibility and effec-
tiveness of the novel control approach. In the context of
our review, this control methodology is active in Phase 3,
triggered by the event changes observable through context
based feedback information.

General form of regulators including nonlinear laws for
Phase 2 of the proposed CACS formalism are commonly used
for adaptation laws. This includes various forms of nonlinear
control, optimal control such asH∞ and generic compensator
forms. Of particular interest is the latter, as it emerges from
a generic formalism of existing system and control theory,
and it is known as fractional order control. Advances in
the past decade in this area provide enabling tools to design,

tune, optimize, validate and deploy them onto real life pro-
cesses. A vast amount of literature and software are readily
available [39]. The most commonly employed tuning mech-
anism is based on performance specifications in frequency
domain. These controllers are suitable for both Phase 2 and
Phase 3 of the CACS formalism.

Supervisory control loops usually contain a mature
advanced control methodology, such as predictive con-
trol. Model based predictive control encompasses proper-
ties of feedback and feedforward with ability to cope with
constraints, delays and model mis-match, all present in
CPSs [40], [41]. In this sense, the existence of a digital
twin greatly increases the performance of the CPS, but it
requires a great effort in the developing part of the CACS
process [17]. Moreover, in the Industry 4.0 framework, prod-
uct individualisation and on-demand product specification
CPSs require versatile and flexible, albeit modular digital
twin solutions [13]. Alternatively, if simple models are used
instead, the effort shifts towards the design of the controller
and optimization cost functions. For CACS purposes, this
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advanced control strategy may not be as relevant for the
adaptation formalism, but for Phase 3 of the above mentioned
concept.

V. SOCIETAL CHALLENGES
A. DIGITAL SOCIETY
In a hyper-connected world, evolving at an accelerated pace,
IoT is at the heart of societal and economic challenges, while
providing vast opportunities. This technology is interwoven
in all domains of applications. Next generation networks
managing large amounts of data require more bandwidth and
wireless networks [42]. Smart devices use sensors (and thus
data) to autonomously gather, share, analyse and interpret the
information tomake decisions. One of themost important IoT
device is the popular smartphone, for which the techniques
required in rule-based automated applications are presented
in [43]. As digitalisation becomes the new standard, more
data become available, requiring adequate tools to understand
it and make it useful [44]. A driving innovation technology
is cloud computing, enabling hardware, software and data
available through internet [45]. As a result, increasing number
of mobile applications appear on a daily basis, providing
highly personalised information to users. Finally, a transver-
sal aspect of digitalisation is electronic security for various
aspects of data transmission [46].

An integrated approach to context-aware of web service
systems is discussed in [47]. This work explains relevant
CAS concepts, such as context information modeling, con-
text sensing, distribution, security and adaptation techniques.
Applications of CAS in mobile computing and IoT are pre-
sented in [24], [31]. They analyze a broad range of method-
ologies, models, applications and middleware connections
related to context awareness and IoT. Another application in
context-aware mobile learning systems is considered in [23].
It focuses on aspects that enable adaptive and personalized
mobile learning for digital society services. A dedicated IoT
surveywith literature from both historical and conceptual per-
spectives while cross-linking the context awareness, machine
learning, and big data is [48].

The concept of Big Data has required specialized tools
for analysing and classifying this data, where context-aware
recommender systems have appeared. Using this set of tech-
niques, the decision-making process of the users is simplified
by the suggestions made available through the leveraged
contextual information. The progress of such CAS systems
is overviewed in the work of [49], but without limiting to any
specific application domain. There are highlighted the recom-
mendation algorithms, the dimensionality analysis, the mode
of representing the contextual information, but also the addi-
tions required by a CAS for recommendations in contrast with
conventional ones.

The information sharing raises several challenges in
complex organizational environments, such as a supply
chain, where the economic activities vary, interdependencies
between collaborators are very high and also the informa-
tion usually takes different types. A method for deciding

what parts of such complex context are considered rele-
vant for clearly designing the CAS is analysed and applied
in [50] for two study applications: tour guide and business-
to-government information sharing systems in the container
shipping domain. The complexity of such large-scale multi-
stakeholder environments and international information shar-
ing requires a context-aware system to support information
sharing. The work proposes a method for efficient and effec-
tive design process by identifying what elements of the envi-
ronment are relevant context. The ambiguity is avoided based
on insight gain into context, which leads to the determination
of the needed components from the context and the rules for
how the system should adapt in different situations.

Still, despite the broad applicability of CACS, they have
been introduced somewhat later into the industrial systems,
because they rise problems such as diversity of data sources
or privacy issues [51]–[53]. Additional examples are given in
the domain of smart resource managament.

B. FOOD
The societal challenges regarding food industry are referring
to quality, sustainability, health and supply chain optimization
to reduce food waste. This sector is highly interdisciplinary
as it crosses links with factory of the future concept in dealing
with supply chain, raw food material use, product quality for
nutrition and consumer safety, and overall production sustain-
ability. In this thematic area, CACS based development is not
explicit, but implicit, as the globalization of the food industry
and foodmarket naturally demands a context aware approach.

The integration of food supply chains with IoT technology
has been addressed in [54]. It enables tomonitor, control, plan
and optimize remotely in real-time with validation on a fish
supply chain management. A model based approach has been
successfully presented and validated in [55] for monitoring
aspects of product evolution, quality and safety during food
processing. This is important to avoid bullwhip effects, which
result in food waste along the supply chain [56].

Sustainability has been addressed in [57], [58], while
emphasizing the vast opportunities for development in this
area, as the current solutions are limited. A notable introduc-
tion of control theory in sustainable agro-food supply chain
decision making, has been proposed in [59]. It proposes a
multi-objective mathematical model to optimize the design of
the supply chain network. This approach allows the simulta-
neous consideration of all three dimensions of sustainability
including carbon footprint, water footprint, number of jobs
created and the total cost of the supply chain design. It uses
hierarchical process management, which is well suited with
control methodologies such as distributed model based pre-
dictive control [60].

C. HEALTH AND WELL-BEING
CACS are highly relevant and already involved in many
healthcare applications [61]. Even if context awareness brings
significant benefits in health and care development, the solu-
tions encounter many challenges in terms of interoperability
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between heterogeneous data sources, in context modeling and
reasoning algorithms.

Context-aware patient monitoring can allow remote
chronic disease management, elderly monitoring, wellness,
applied in home care (as Active and Assisted Living (AAL)
system) through IoT or in a non-fixed environment using
wearable IoT. So called mobile health scenario provides
friendly electronic health applications (smartphone-based or
Internet-based), but also can be used as communication sys-
tems between the patient and their doctor, based on real-time
alerts. Also, specific physiological or surrounding informa-
tion may predict declines in the health status and transfer
them as alerts to the patient or to the doctor. The critical
role of CACS in managing cardiovascular disease is notably
emphasized in [62].

The integration of CACSs and affective computing
paradigms is proposed by [63] for building a mobile platform
that identifies and interprets the affective state. Furthermore,
a method for personalized detection of emotions is formu-
lated and implemented through the use of wearable device.
The architecture includes the adaptable model layer and the
context-based controller layer for both physiological context
acquisition and emotion recognition.

Clinical health care management is also a sector that can be
improved through context-aware electronic patient record (as
component of electronic medical record) [64]. For example,
pathology patterns can be identified and patients in risk can
be informed before they show symptoms, or the patient’s
context can be analyzed and a correct interaction process may
be provided for assisting hospital staff activities. The most
intriguing CASs in healthcare are the autonomic systems that
receive feedback from patient’s attached monitors or doctor
actions (e.g., closed-loop anesthesia, robotic surgery).

Recently, assessment on health conditions based on the
monitoring parameters is applied on chronic obstructive pul-
monary disease (COPD) patients [65]. The CAS controls the
vital parameters of the patient in relation to his demographic
andmedical profile, physical activity and environment. Based
on an ontology reasoning, the monitoring infrastructure pro-
vides rules-driven recommendations, but also actions in real
time. The results obtained 89% accuracy for physiological
and environmental data identification, respectively 87% for
nutrition information and physical activities. Moreover, tools
from artificial intelligence provide better classification out-
comes reviewed in [66].

Providing support to people in need of assistance, is a
novel context-aware hazard attention system to be used on
smart glasses [67]. For the assistive technology for impaired
peripheral vision, the type and location of objects are detected
with a deep learning object classifier. Their motion features
are further extracted by tracking the frames appearance, speed
and direction. Then, each recognized object is classified in
levels of danger using a neural network classifier. Tests on
public and private data sets shown a classification perfor-
mance of 90% true positive rate, while the false positive and
false negative rates were 7%, respectively 13%.

Another health-care system dedicated to people with
movement disabilities is developed by [68]. The proposed
assisted-living technology utilizes sensors and cameras in
order to monitor individuals’ behavior, based on which a
virtual agent interacts with them. Heterogeneous data about
user’s body and his surrounding environment is collected,
processed and saved using ontology language into models
for profiles, activities, medical and verbal communication
information, and relationships between them. The application
brings benefits in hospitals to the caregivers, able to provide
personalized advanced guidance to their patients or to detect
patient falls. However, the patients can be assisted in their
homes by this aware technology, through proactive action
alerts in cases of emergencies or through vocal commands for
adaptation of linked equipment (e.g., change of bed angle).

CASs have emerged in operation rooms under several
applications that differ on their scope. Management of surg-
eries schedules can be improved through real-time supervi-
sion of operations, so a new application of CAS obtains online
prediction of the duration of laparoscopic interventions [69].
Information from endoscopic images and surgical devices
is classified with CNNs in different methods for prediction.
Their evaluation on recorded interventions concluded that a
combined method produces a lower average error (37%) than
a singular method based only on vision or device data.

On the other hand, pervasive computing faces challenges
while working with medical sensor nodes, where faulty data
or even loss information can lead to false inferences regard-
ing the patient’s real state. Therefore, [70] propose a trust
management scheme that avoids false alerts of the care-
giver. The context-aware technology allows data fault detec-
tion (using heuristic, learning, correlation and time series
analysis), data reconstruction (implying k-NN, clustering and
Bayesian methods) and event detection (approaching sin-
gle local detection, decentralized, centralized and distributed
schemes). The proposed approach works with taxonomies of
trustworthiness divided into different levels of rightness of
medical data. The experiments proved that the context-aware
scheme for pervasive healthcare is effective in detecting med-
ical emergencies, but system initialization is needed.

Another challenge for the use of wearable sensors in
pervasive healthcare is their battery life-time related prob-
lems. Thus, [71] introduce an aware wearable prototype that
integrates both power-efficiency and physiological state pre-
diction for remote health monitoring. Sensors for body and
environmental data (e.g., temperature, humidity, accelerom-
eter, electro-dermal activity) provide temporal and spectral
features. These features are dynamically selected depend-
ing on the user’s physical activity from that moment. This
way, only the relevant sensors are active and a group lasso
regression is used on them for further heart rate prediction.
The contextual aware methodology successfully reduced the
power usage of wearable platforms, while accuracy in heart
rate detection was preserved.

One important application of CASs is their involve-
ment in closed-loop control systems, but using non-invasive

215556 VOLUME 8, 2020



R. Cajo et al.: CACSs: An Engineering Applications Perspective

monitoring methods. An application which matured
significantly over the last two decades is the automatic insulin
delivery system [72], [73]. The introduction of control system
theory in resolving context aware changes of glucose-insulin
levels in diabetic patients has enabled great progress for
patient comfort, well being and quality of life [74]–[76].
For example, the CACS proposed by [77], showed good
performance in maintenance of glucose levels based on
human activity recognition. The algorithm uses a CNN for
classifying six different human activities direct influencing
the glucose dynamics (jogging, walking, moving upstairs,
moving downstairs, sitting, and standing), using smartphone
accelerometers. The recognized activity along with the food
intake and the past glucose readings are used as inputs by
the glucose NN prediction model. Subsequently, a controller
regulates the insulin bolus in order to bring the blood glucose
levels within the safe limits. As such, mathematical models
remain at the core of context aware drug delivery CPS con-
trol, either parametric based [62], [76], [78] or information
based [64], and with potential for application to animal
welfare [79].

Alternatively, human activity recognition is enhanced
in Internet of Healthcare Things applications [64], e.g.
by using semi-supervised deep learning framework [80].
Multiple motion sensor data, weakly labeled, obtained by
various wearable devices is classified based on DQN intel-
ligent auto-labeling scheme and fusion mechanism, while
fine-grained LSTM model is applied for temporal features.
Evaluation results reported in [80] based on the area under
curve (AUC) indicated that the IoT framework obtained an
AUC equally with 0.95, while other methods shown lower
results (DNN, SVM, RF reach values of 0.87, 0.74 and
0.9 respectively).

D. SMART RESOURCE MANAGEMENT
The objectives encompassed by this societal challenge
are to empower efficient use of resources, reduce energy
consumption, have minimal environmental impact, enable
growth and employment, while maintaining a competitive
industry.

Naturally, industrial systems with context-aware features
offer a high potential in energy efficiency, because it is
influenced by several aspects. For example, industrial sys-
tems depend on the product type being fabricated, on the
condition of industrial machines, on the ambient factors and
on human experience [81]. Hence, building energy mod-
els of industrial machines have been developed based on
the effect of context information [82]. These context vari-
ables are divided into regions based on Regression Trees
algorithms, as they are suitable for continuous measured
data due to fast computation. Further, by implying multiple
Recursive Least Squares (RLS), a local energy consumption
model is estimated for each region affected differently by
the context. The validation of the multi-model approach is
performed on a real cement plant in three different operat-
ing contexts (determined by the type of produced cement).

The results show very accurate model’s prediction, conclud-
ing that a model-based decision support system brings several
advantages, such as better production strategies, less energy
costs etc.

An application to design a context-aware assistance sys-
tem, with the role of human-machine interface (HMI),
for industrial applications is available using localization
data [83]. These raw data such as user’s location and role
(e.g., operator, maintenance) are ontology-based modeled.
Two application scenarios are extracted, as follows: indoor
navigation pathfinder and dissemination of specific infor-
mation related to a machine, both for the maintenance per-
sonnel. The first user interface is a virtual map that guides
the technicians towards a nonfunctional machine, based on
the acquired information (status of equipment, his own loca-
tion, distance). The second scenario allows evaluating the
functionality of a desired machine, whereas the application
provides to the user the information relevant to his location
and role. The proposed methodology that integrates context
awareness into a proactive decision support system can be
applied to any production infrastructure, using just camera
monitoring. Hence, CPSs as part of industrial processes rep-
resent a big step-forward to self-optimization of manufactur-
ing processes.

Aiming efficiency and productivity increase in manufac-
turing industry, several works imply context awareness, espe-
cially in flexible manufacturing systems, such as pharma
industry [84]. An experimental application on shoe indus-
try is given in [85] using ontology-based reasoning. It is
applied to the injection machine, whose valves are auto-
matically adapted by context information (e.g., air pres-
sure and material type). It was observed that after training,
the valves continuously change to an optimal frequency for
opening, according to the injected material type. Optimizing
CACS is also proposed by [86] in a real-time control and
supervision of an industrial process of precision agriculture.
It is proposed a multi-layered CAS that combines concepts
as IoT, CA and Cloud computing. Environment and pro-
cess sensors provide context data (e.g., soil humidity, tem-
perature, pH and conductivity; light intensity, atmospheric
pressure) that are stored in an IoT platform, all integrated
in a framework of Cloud computer. The architecture has
been successfully validated on an irrigation system. The
controller proved to respond to environmental changes in
order to maintain the set point, using classical rule-based
inference techniques of Artificial Intelligence as context
reasoning.

Utility processes in industry with demand side response
framework into the energy grid are good examples where
dynamic modelling is relevant for CACS optimization. The
safety aspects of such processes are discussed in [87] from a
thermal objective perspective.

Overall, closing CACS loops in a circular economy and
implementing the factory of the future framework [81] are
transversal to other challenges such as digitalisation and
food [54], [55].
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E. URBAN PLANNING, MOBILITY DYNAMICS AND
LOGISTICS
These aspects of our society are highly interwoven, but a
holistic approach to context aware system and control is
not yet enabled. This is due to the high connectivity, data
streaming and large flow of information within the IoT for
such complex CPSs. Instead, we summarized below the most
relevant challenges and solutions proposed in each of their
thematic area.

1) URBAN PLANNING
The concept of context awareness is integrated in smart
homes system usually by IoT sensor network. IoT encom-
passes interrelated devices and sensors that can transfer data
over the entire network, and interact with the environment
and the user [31]. For example, the contextually awareness of
the user location and room temperature allows automatically
switching on the light or air conditioner [88].

The analysis of the main works developed in this area
is described based on the application’s objective. A case
study aiming energy use efficiency is tested on a university
classroom by [89]. The context classification is designed with
rule-based reasoning. A total of ten rules were associated
with information of temperature, light, human presence, and
power consumption sensors, reporting a high potential to
improve energy use efficiency.

The ability of context-aware adaptation has been reported
to improve the comfort and autonomy in a home. [90] propose
a fuzzy classifier of ambient data for user’s behavior recogni-
tion, in order to control lighting, appliances and temperature.
Six behavior patterns are generated, using temperature, light
and human presence. The study case concluded that the con-
trol response time was decreased with 6.98 ms compared to
other architectures, while the precision was kept at 95.14%.
On the other hand, two works to enhance comfort and home
automation based on voice control are presented in [91], [92].
They use different classification algorithms of context data.
In [91], the context is inferred using rule-based and Markov
Logic Network reasoning, at the time of a vocal order or a
risky situation for the user. The decisive context information
is defined as activity, time and location after the processing of
acquired data (speech, water consumption, lamp status, tem-
perature and human presence sensor). In contrast, the applica-
tion from [92] employs Deep Q Network (DQN) for context
inference, any time the environment context changes. Thus,
a graphical representation projects data on a two-dimensional
map of the smart-home, integrating the context data from
many heterogeneous sensors (e.g., temperature, contact-door
and speech) into a unique image.

Both comfort and energy efficiency in buildings are
analyzed by [93], using CASs for control of heating, venti-
lation, and air conditioning. The continuous adaptive envi-
ronment model is learned using online NN with inputs of
indoor/outdoor temperatures and power supply inputs. The
work concludes that on-line control of terminal tempera-
ture is more stable and closer to the expected temperature.

A combination of artificial intelligence tools with matured
advanced control strategies is successfully employed in [94]
to optimize overall energy consumption.

Activity recognition in order to lock the door automati-
cally is published by [95]. The system consists of a Passive
Infrared (PIR) Sensor Network that provides users movement
data. However, it is considered low level data because of the
lack of direct relation to the desired context, represented by
the activity. To overcome this challenge, a non-conventional
learning method is implied, namely Hierarchical Hidden
Markov Model (HHMM). This approach brings high level
attributes through activity recognition, by transforming the
raw training data into activity information. It is hierarchical
based, meaning that the number of learning levels determines
a certain context. Comparing HHMM method with classical
Naïve Bayes and HMM, the best performance to inference
the correct security level was obtained by HHMM-based
Context-Aware Smart Door Lock, with 88% accuracy.

2) MOBILITY DYNAMICS AND LOGISTICS
CACS is a natural approach for motion planning, cooperative
objective optimization of unmanned vehicle platoons and
fleet [96]. A notable survey is given in [97] for various vehic-
ular applications discussed in terms of safety, traffic manage-
ment, convenience, entertainment, among others. However,
in situations where the human involvement is required (e.g.,
for disaster relief), are proposed the human-advanced-vehicle
systems that are contextually aware. The relevant literature
is analysed in the survey of [98], identifying further open
research questions and opportunities.

Context-aware vehicular systems have gained intensive
attention from both automotive industry and academia,
because this concept is essential for advanced driver assis-
tance, safety, fuel consumption efficiency and transportation
networks. The context information applied on vehicles topic
relates to any information that describes the driving situation.
The vehicular applications of CAS are classified by environ-
ment, system-and-application, and context awareness [97].
Based on the driving context information, CASs adapt to the
changing driving events.

Context awareness is integrated in Advanced Driver Assis-
tant Systems (ADAS), providing improvement of knowledge
about the states of the car, the external conditions and of
driver’s psychological state (e.g., attention, fatigue levels).
Based on context-aware drive behavior detection, applica-
tions for ADAS, safety and fuel efficiency are further dis-
cussed in this subsection.

The literature revision reveals classification of drive behav-
iors that typically depends on the objective of the application.
The driving style has an essential impact on fuel consumption
and safety, as well as the technological characteristics of
the car and the road conditions. Therefore, the awareness of
driver states, along with the recognition of driving style and
intention inference plays the most important role in CASs.
These data about driving pattern (e.g., acceleration, speed),
traffic conditions (e.g., location of the personal car and of the
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other participant cars in the traffic) and environmental infor-
mation (e.g., slippery road, bumps) can be acquired through
the available sensors integrated in the cars or part of other
technologies (e.g., Global Positioning System (GPS)).

The terms mostly used in the main works developed in
this topic are described bellow, in order to avoid misunder-
standings and confusion, as no unique definition has been
previously agreed:
• Driving events are defined as the maneuvers occur-
ring during driving (e.g., acceleration, direction change).
They are used to recognize the driver’s driving style;

• Driving pattern describes the profile of position, speed
or acceleration, including also the driving events (e.g.,
number of accelerations, time at constant speed, number
of lane changes) extracted from the context analysis;

• Driving behavior relates to the driving patterns exclu-
sively focusing on driver’s decisions and neglecting
external information;

• Driving style refers to the particular driver’s way to
operate the car, but in the combined context of human
and external influences.

For the aim of transportation quality that concerns comfort,
safety, and economy, a study on driving behavior, indepen-
dent of external conditions, is presented by [99]. The context
is estimated based on a classification framework of four
behavior categories: ordinary, aggressive, unusual and calm.
Using data acquired from the car diagnostic port, an addi-
tional accelerometer sensor and a GPS module, eight indi-
cators (index-based) are obtained. They provide information
about the vehicle’s speed, acceleration, jerk, engine rotational
speed and driving time. This method has been validated
on several drivers. [100], [101] and [102] opted for more
precise categories defined as normal, drowsy and aggressive
behavior. These works have been developed for the objectives
included in ADAS and driver safety applications. The clas-
sification method for driving behavior in [100] and [101] is
based on fuzzy logic using driving events (e.g., acceleration,
braking, turning, lane weaving, lane drifting, over-speeding
and car following). Furthermore, driving style recognition is
obtained through random forest method using characteristics
of both driver and road [102]. Another ADAS application is
proposed and simulated in [103]. The work divides abnormal
driving behaviors into three categories: the fatigue/drunk,
the reckless and the phone use while driving. The index-based
classification method considers the driving events such as
throttle position, speed and brake pressure.

Safety is another objective in CAS context-aware drive
behavior applications. [104] and [105] define driving behav-
ior as normal and aggressive, but their works differ through
the used classification algorithms. In [104] are evaluated the
following algorithms: SVM, Radial Basis Function Network
(RBF), Logistic Regression, Bayesian Network, Decision
Tree, k-NN and Naïve Bayes. By comparison, the SVM
algorithm achieved an accuracy of 93.25%.Whereas, in [105]
are analyzed Random Forest (RF), Random Feature Selection
(RFS), and Long Short Term Memory Fully Convolutional

Network (LTSM-FCN). The LTSM-FCN method reached
95.88% performance to differentiate between aggressive or
normal driving behavior, characterized by six driving events
such as speed, acceleration, orientation, car position relative
to lane center, time of impact to ahead vehicle and road width.
Finally, two recent articles that focus on safety have been
presented by [106] and [107]. [106] propose three categories
to classify driving behavior in calm, normal and aggressive,
by testing five classification methods (SVM, ANN, fuzzy
logic, k-NN and RF) based on acceleration, braking, deceler-
ation and traffic violations. The experimental results showed
the greatest accuracy (96%) for SVM. Deep neural nets
seemed to be the best choice for road safety in term of overall
performance, as shown in [108]. On the other hand, [107]
includes acceleration, gravity, throttle, speed and revolutions
per minute to recognize five types of driving behavior. They
are listed in five classifications from normal to abnormal
(normal, aggressive, distracted, drowsy, and drunk driving).
Preliminary step converts the data into images, by apply-
ing overlapped time windows and recurrence plot technique.
Then, a CNN technique classifies the aforementioned behav-
iors, allowing alerts transmission to driver or other vehicles
via wireless communication technology.

The analyzed safety and ADAS oriented models are linked
also to the objective of fuel consumption efficiency in vehi-
cles, as many context properties are found to have significant
effect on emissions. One work that considers changes in
driving behavior for the design of a novel modified stochastic
model predictive control is presented by [109]. It focuses
on predicting driving events or repetitive cycles of a plug-in
hybrid electric bus in an energy management strategy. While
speed, acceleration and pedals position signals are the context
observations for the K-means clustering of driving behaviors,
theMarkov chain-based driver models are developed for each
category. In total, eight categories of driving behavior are
generated and describe different levels for traffic conditions,
slopes and speed. The proposed method was tested with the
real-world bus routes, allowing 26.61% reduction of fuel con-
sumptionwith respect to charge-depleting and charge sustain-
ing control strategy, respectively 5.58% reduction compared
to classical stochastic model predictive control that does not
consider driver behavior model. A variant of the previous
work with only traffic conditions level (six levels) is included
in [110]. The events of speed, acceleration and pedals position
are also employed to detect the most likely driving behavior,
with a Fuzzy Subtractive Crusting (FSC) approach. An adap-
tive fuzzy controller mode, designed by particle swarm opti-
mization (PSO) algorithm, regulates the power flow of fuel.
With a prediction accuracy of 84% for driving recogni-
tion, a fuel consumption reduction between (9 - 17)% was
obtained. Subsequently, the context-aware driver behavior
system is implemented in a control strategy for an elec-
tric vehicle with dual-motor coupled drive-train [111]. This
work aims to achieve reasonable mode switching and optimal
power allocation between the twomotors of the vehicle, under
a known driving behavior. The driving behavior is classified
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according to driving events of speed, idle time, acceleration
and deceleration, bymeans of Generalized Regression Neural
Network (GRNN). The 96.08% classification performance
provided 11.04% energy reduction under the urban driving
behavior. Additionally, two more applications of fuel con-
sumption efficiency for a plug-in and a series-parallel hybrid
electric buses are proposed in [112] and [113], respectively.
For both cases, the driving behavior identification is modeled
using Learning Vector Quantization (LVQ) NN on speed, idle
time, acceleration and deceleration. The adaptive rule-based
control strategy from [112] outperforms the classical original
rule-based control strategies (that exclude driving behavior)
by energy consumption reduction of 4.94%. The results are
motivated by the exploitation of driving behavior informa-
tion beside the effect of operation in different conditions.
A greater economy is reported in [113] (7%), considered to
be caused also by driving behavior recognition. The proposed
methodology consists of two levels energy management: i)
a supervisory control to output the best operating mode and
ii) a fuzzy control strategy to decide the components’ power
distribution that satisfies the total driving requirement.

3) ROBOTIC SYSTEMS
Context-aware solution is the essential part of robotic
systems that provides the required context data through
sensors. It allows robot systems to action automatically
according to the environment, after being programmed by a
computer. Usually, robots can be classified by the environ-
ment they are in and by the application field for which they are
designed [114] (see Fig.6), so the following reviewed
works use different types of robots. Important features of
autonomous robotic systems are autonomy [115] and coop-
erative motion planning [116].

A context classifier of environment type (indoor, outdoor)
in service robots is proposed in [117]. However, the archi-
tecture is scalable and permits the definition of many other
context types. The classification technique used is Bayes Net-
works because the stochastic context data are also partially
observable and have a sequential activity. Therefore, are used
inputs such as temperature, humidity and light, number of
satellites (from GPS), soil type (from inertial measurement
unit (IMU)), gas level and time (day/night). The obtained
classification accuracy was 87.5%.

Controlled robotic assistants have intensively emerged in
surgery room environment, so [118] present a robot capable
of adaptation of control strategy based on surgeon’s activ-
ities. The clinical relevance of such a context application
is improvement of safety and inference of the human-robot
cooperation. This cooperation is critical for the knowledge
about the time and locus that the robot should provide the
most appropriate level of assistance to the surgeon. The
classification of the current surgeon’s activities is based on
primitive human actions, namely gestemes. The online algo-
rithm addresses gesteme-free activity classification because
the vocabulary of gestemes is not required to be defined.
The surgeon’s activities models are described by Gaussian

FIGURE 6. Classification of robots by (a) environment and mechanism of
interaction, respectively by (b) application field.

distributions (low-level models), while HiddenMarkovMod-
els (HMM) (high-level models) ensure the switching between
low-level models. After training the models using off-line
processed data of 30 trials for each activity, the performed
activities are classified based on forward-backward recur-
sion implemented in the Robot Operating System (ROS).
Thus, four main activities performed by the surgeon for dif-
ferent levels of assistance during hands-on robotic surgery
are recognized in real-time: idle, wandering, leaving and
approaching. Having intention-awareness, the robotic system
smoothly adapts its behavior to the user’s intention, addressed
by Finite State Machine (FSM). The experimental trials eval-
uated the recognition of current actions at 80% accuracy
after 450 ms. A related work with human-robot coopera-
tion that supports people suffering of movement disabilities
is developed in [119] by enabling them to regain motion
functionality. By detecting the object of interest for the user,
the context of the environment and intention of the user are
extracted through CNN techniques. The system guarantees
successful implementation for three types of movements:
reaching actions (100%), pick and place task (96%), and pick,
pour and place task (76%).

Autonomous Unmanned Aerial Vehicles (UAVs) are sys-
tems that require to be context-aware because they are defined
to operate in uncertain environmental conditions. During
unexpected obstacles, weather changes and sensor or other
hardware/software component failures, UAV robots need to
adapt. Adaptive control strategies based on robot model and
hostile environments need to detect the failure in order to
action. A work about context-aware diagnosis for UAVs is
proposed in [120]. The status of the system components and
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appearance contexts are sensed. Next, the failure patterns
are recognized by means of Bayesian logic, resulting in two
failure scenarios related to the GPS and the battery. Addi-
tionally, a novel human-aware navigation for a mobile robot
based on semantic maps and intention-awareness is intro-
duced by [121]. The map is developed based on simultaneous
localization and mapping (SLAM), where features for the
semantic SLAM are planar surfaces (e.g., walls, tables) and
static objects (e.g., door signs). Afterwards, optimal move-
ment model is Bayesian-based estimated in order to update
latent goals related inferences. Thus, intention-awareness
is achieved by counterfactual reasoning. A quadrotor UAV
used for surveillance and overhead monitoring is presented
in [122] based on context aware iterative learning control
strategies.

A two axis positioning mechanism is analyzed in [123]
based on a context aware hierarchical control system
approach. Previous learned solutions to previous tasks are
used as the standing foundation for the development of a
tracking solution. Reference inputs and controlled variables
are used in a model free iterative learning control algorithm
as library pairs to generate the next control action. The study
solidifies the importance of context awareness in the robotics
fields, providing context-based solutions that might eliminate
the need of complex dynamics modeling.

Generic transportation systems with context-aware fea-
tures are reviewed in [124] with specific challenges in marine
systems [125] and aerospace industry [5].

F. NEW ENERGY DEMAND AND DELIVERY
The identified technological gaps in this area relate to sustain-
able energy supply, reduction of energy demand, and increase
capacity and efficiency of energy storage systems.

Balancing problems of energy supply and demand are
addressed in smart energy grids including information
and communication technologies [126], [127]. Naturally,
these CPSs require a context aware approach for system
modelling and managing, while endorsing environmental
preservation [128]. The increased utilisation of distributed
renewable energy sources in low voltage grids leads to power
quality problems such as overvoltages and voltage unbalance.
For example, in [129], an energy storage system is combined
with the classical positive-sequence control strategy and the
three-phase damping control strategy to provide insight into
power quality. A transversal review between smart grid and
smart city framework is given in [130].

Renewable energy integration remains challenging due
to stochastic nature of supply and demand in smart grid
systems [131]. Distributed control seem to cope well with
variations in operating conditions of power systems [132],
while multi-objective optimization may offer versatility in
short- and long-term economic objectives [133]. Multi-agent
artificial intelligence algorithms applied to wind farm
throughput optimization seems to be better positioned when
data and structural features are integrated [134].

G. SOCIETY
Knowledge on people and society in general is indispens-
able in the socio-economic context perspective. Models from
social sciences and humanities exist but not matured for
utilization in a context aware driven society framework [135].
When society is addressed at large, interdisciplinary knowl-
edge and cross-fertilization of tools are the the heart of a
successful management policy [136]. A recent example is
that of pandemic challenge, where global collaborations are
crucial to provide social distancing mobile apps [137]. Also,
it is important to keep in mind the social distancing policies to
mitigate the COVID-19 spread in the population. To handle
this several social distancing policies have been formulated.
In [138], aModel Predictive Control (MPC) policy tomitigate
the COVID-19 contagion in Brazil is proposed. This opti-
mization algorithm allows to determine the time and duration
of social distancing policies in the country. While other coun-
tries have opted for rigid social distancing measures, which
has produced devastating economic effects [139].

Epidemics of given infections at a world-wide scale are
integrated into the context aware paradigm through Rein-
forcement Learning (RL) and Monte Carlo control strategies
in [140]. These tools are employed to develop a general model
for general epidemiology, but with customization possibil-
ities for particular infectious diseases. Outbreak responses
can be managed using context-depended solutions. However,
the challenge consists in translating different machine content
to human decision makers, for particular policies.

VI. DISCUSSION AND CONCLUSION
CASs present interest tomany applied industries because they
assure assistance to users or to processes themselves, by self-
adaptation of systems components. This is possible through
acquiring, processing and disseminating the context data in
real-time. Thus, a manifold of applications involving context
awareness and CPSs have been developed in high impact
industry domains and healthcare, which were analyzed in this
survey.

Early applications have used context reasoning tech-
niques such as Rule-based, Fuzzy Logic, Probabilistic and
Ontology-based, because these methods are characterized by
low computational cost and ease of implementation. How-
ever, recent innovation-driven computer systems have trans-
ferred the attention towards intelligent classification that
exploits machine learning. This happened because microcon-
trollers and microprocessors allow implementation of such
high computational learning algorithms.

As stated in the definition of CASs, the main benefit for
using context awareness concept in a system consists on
self-adaptation of its operation. It follows that control algo-
rithms, structures and parameter values must be adapted to
the current state of the context operation. For instance, auto-
motive industry innovations center around advanced driver
assistant systems and adaptive controllers, in order to improve
one of the main challenge nowadays, energy consumption,
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in (hybrid) electric vehicles. Optimization of energy effi-
ciency in buildings is also desired, but significant accent is
still put to improve the comfort, autonomy and safety of users
in smart homes. As energy consumption is also an issue in
industry, adaptive plants have proved to achieve a reduction
in energy, but also a greater efficiency and productivity of the
processes. Future challenges for the cyber-physical manufac-
turing are reviewed in [81]. On the other hand, context-aware
robotic applications aim to enhance human – robot coopera-
tion and to benefit more from autonomous navigation consid-
ering human behavior. Finally, the integration of the context
awareness instrument into healthcare CPSs brought advances
in telemedicine and remote care solutions as IoT-aware AAL.
Knowledge about vital signs of an individual, predicted based
on actual contextual information, can avoid unsafe situations
and personalized treatment.

The integration of control in the big picture framework of
operation has several opportunities for research which are not
yet addressed at this moment. We summarize here several
such opportunities in various areas of applications.

For instance, in manufacturing processes, we have
large scale processes with interacting sub-processes and
mixed dynamics. There is the need for anticipating unex-
pected/gradual installation breakdown or disruptions, which
may have tremendous financial consequences (e.g. ongoing
pandemic). For instance, start up after breakdown may take
days/months in processes as steel, paper, petrochemical or
anaerobic digesters for watertreatment plants, etc. The cost
of upgrading control loops is too high (70% of total expert
deployment of control loops) [141]. However, large amount
of data is available and can be used at its full potential.

Another commonly encountered application area is that
where we have mixed autonomous and human systems.
General example are assembly lines for products and auto-
motive industry. The human in the loop has a high decision
role in the operation and safety is the first concern, prioritized
above high precision positioning and delivering elements to
be assembled. Most of these loops are in open loop mode of
operation in designated operation volumetric 3D areas and the
human presence is a logic variable. This could highly benefit
from a self-learning and self-optimization approach whereas
the human in the loop with various degrees of expertise (new
employer vs expert employer) can be integrated to aid and
speed up the learning curve for the new employer.

A specific example of intelligent management system is
the HEV (hybrid electrical vehicle). The operation of a
HEV takes place in a fast changing environment and human
behaviour has critical consequences upon the performance of
the system as a whole. Changing settings as ECO, SPORT,
SAFE modes require a self-optimization of the delivered
torque as a function of context. Currently, the human related
information integrated into the system is not exploited at
its full potential. For instance, if multi-loop and multi-level
information flow is used for self-detection of events (driver
sleepy) can be used to optimize performance or endorse
road safety. Or, another example: if event of driver sleepy

(head tilted, eyelid closing) detected, then go to autonomous
drive mode (if road context and road infrastructure allows) or
identify first stop to self-park car or drive to home (predefined
safety location). The mixed HEV optimization here included
ensuring fuel/battery will suffice to reach either pitstop des-
tination or home.

Another such application of a mixed information system is
that of agricultural / heavy-duty machines for field operation.
These contain many moving parts, belonging to independent
but highly interconnected sub-processes, all linked to a sin-
gle source of power/torque. The need is for self-diagnose
and self-service on location, avoiding the cost of driving
to service shop and minimizing the disruptive effect of a
service stop. Diagnostics must take place in the field, whereas
gradual/disruptive deterioration can be detected, and solution
can be self-implemented on location. Operator decision based
on alarm level can be used to self-optimize or return to base
for repair. For example, if one of the internal mechanism
is deteriorated, other sub-systems can operate at lower per-
formance to allow the deteriorated one to have more power
shifted to it; or multi-level loop restructuring may be used to
discard using failed instrumentation (sensor or actuator) and
use instead information from by-loops.

Finally, a highly relevant application is that of autonomous
fleets and the connected car ecosystem concept. The
objective is to have dynamic fleet management for
autonomous mobility-on-demand. This can be done by
self-optimization and self-decision of trajectory based on
demand/utility/priority/traffic density/regulatory issues. For
instance, an autonomous vehicle moving freely in a fluid
changing properties. Climate change effects can be assessed
by detecting changes in the density of the water/ice/silage/etc
and measure contamination to determine affected area. Sim-
ilarly, in nanomedicine, autonomous pill-size vehicle may
travel along pulsatile flow in arteries and measure blood
density, drug concentrations or detect/remove clogs along
the way. Dependent on the context - in this case blood
density - the information and decision-making procedures
may vary. The battery use for propelling or actions (drug
release, clog breaking, etc) may be optimized as a function
of the environment and this is a fully self-triggered mode.

In general, the current operation of the CASs can be sum-
marized in Fig. 7.
There are several technological barriers identified in the

operation of CASs from Fig. 7.
1) Industrial upgrade. Operations are degenerative in

terms of hardware wear and tear, software upgrades,
human in the loop expertise is lost once replaced, etc.

2) Robustness/Adaptability to (Un)foreseen Events. Lack
of methods and tools that can deal with (un)foreseen
events in the operation/industrial environment, usu-
ally leading to performance deterioration and possibly
shut-down (inoperability) of the machine/plant.

3) Operability and Maintenance of System. Lack of meth-
ods and supporting tools to maintain optimal operation
of the machine/plant during specific/disruptive events.
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FIGURE 7. Illustrative concept of context aware control system where information flow is
uni-directional and not approached globally; instead, decisions are made locally.

FIGURE 8. Proposed concept of context aware control system where information flow is
multi-directional and approached globally.

4) System (Self-)Sustainability. Lack of methods and sup-
porting software tools to ensure self-sustainability of
the system under all circumstances and lack of learning
from human expertise (decisions) during operation.

The proposed self-sustainable operation of the CACSs is
given in Fig. 8.

To achieve the proposed operation of the CACSs as
in Fig. 8, several challenges are necessary to be tackled.

1) to detect, map, learn and prioritize events in varying
operating environments (resolved by CASs);

2) to trigger a self-evaluation and subsequent self-optimization
mechanism

3) to provide continuous operation of plant/machine at
all/most times, and

4) to move away from local to global self-sustainability of
the plant/machine (i.e. a holistic approach).

If these challenges are addressed, the following objectives
are achievable:

1) structural and parametrical adaptations at cross-level of
operation

2) ensure continuous operation of plant/machine at
all/most times

3) minimize or soften the curve of the economic cost
of upgrading hardware/software and training human
expert man-hours

4) capture, store and use operator experience: by asking
operator feedback and incorporating that knowledge
in the decision mechanism (but enables bidirectional
flow: operator also learning from self-optimizing deci-
sions).

A focal point in the study and assessment of context
aware solutions are the cyber-security risks targeting a large
scale system [142]. Large scale knowledge sharing creates
cyber-vulnerabilities such as data loss or data theft, branded
exploits against machinery, hacktivism, phishing, etc [143].
From the society perspective, the greatest threat consists in
the individual itself [144]. Combining the individuality of a
Society subject with the intrinsic data retrieval property of
the Digital Society, various contextual information character-
izing the individual is shared with external sources. Hence,
a person may receive personalized suggestions dependent
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on its present life context, opening the door to a manifold
of security threats such as social engineering attacks and
targeted executive threats [145].

To conclude, context aware systems require a super-
visory mechanism for self-monitoring, self-evaluation,
self-classification of the condition of machinery and final
products with the final purpose to self-optimize the global
performance of a process/machine that works robustly in an
industrial (varying) environment.

APPENDIX
LIFE-CYCLE OF CAS
Acquisition process involves several challenges are brought
up by multiple and distributed sources (e.g., lower qual-
ity of the information), possible inaccurate or missing data
from sensors, addition or removal of sources (e.g., scalability
issues) and sharing of sensors and service resources between
many users (e.g., difficult to acquire the information) [21].
It follows a set of determinant factors used to acquire context
and to vary the context-aware solutions:

• Responsibility. The communication of the responsi-
ble software component with the sensors can be pull-
based, when the software requests data from the sensors,
or push-based, when the sensor pushes the data to the
software;

• Frequency. The acquisition can be instant, known as
event-driven action, or interval-based, when sensors col-
lect data about events over certain period;

• Source. Sources of data can be the sensor hard-
ware, a middleware infrastructure or context servers
(e.g. public databases or web services);

• Sensors types. There are three possibilities: physical
(e.g., digital or analogue outputs), virtual (retrieve data
from many sources and present it as sensor data) or
logical, that obtain more relevant information from the
merge of physical and virtual sensors;

• Acquisition process. The context data can be acquired
in three ways: sensed through sensors, derived by com-
putational operations of raw sensor’s data or manually
provided by the users via preferences.

Modeling of the context can be considered the most rel-
evant component of CAS. The acquired sensor’s data have
a form that can be used by computing components, but may
be non-understandable to the user, requiring translation into
meaningful terms. Such models involve the representation
and unique identification of context information through its
entities and their relations. They need to be simple, reusable,
expandable and ready at run-time, but also able to validate
pieces of data and encode its uncertainty [30], [146]. Context
modeling is implemented through several approaches [147]:

• Key-Value. The models are name-context value pairs,
usually independent to other pairs. These models are
suitable for limited amount of data (e.g., user prefer-
ences, application configurations), being simple enough
to describe it;

• Markup Scheme. Commonly modeling hierarchi-
cal data structures, these models use mark-up tags,
attributes and content. The models are defined based
on XML languages (Extensible Markup Language)
for encoding context information in a format that is
both human-readable and machine-readable. Markup
schemes can enable the format for intermediate data or
the mode of data transfer over network (among applica-
tions or among application components);

• Graphical. Graphical models capture relationships
within the context and are mainly represented by
databases. The modeling techniques use Unified Mod-
eling Language (UML) and Object Role Modeling
(ORM). They allow storage of large volume of data, but
also quickly operations of data retrieval;

• Object-oriented. The models exploit class hierarchies
and relationships through techniques such as encapsu-
lation and inheritance. The context is thus presented in
a high-level programming language that supports object
oriented concepts. Consequently, object-basedmodeling
provides context run-time manipulation and supports
data transfer over network;

• Logic-based. The models take advantage of facts,
expressions and rules, in order to derive the highest con-
text knowledge compared to the other modeling tech-
niques discussed previously. Therefore, they are suitable
to be used for modeling policies, constraints and restric-
tions;

• Ontology-based. The models provide ontologies that
describe taxonomies of concepts and even relation-
ships. This approach shares a common understanding
of context data among different software and users,
assuming interoperability and re-usability of shared
knowledge. Besides, ontologies provide the structure for
data stored in relevant sources. The models are con-
structed using popular ontology languages, such as Web
Ontology Language (OWL) and Resource Description
Framework (RDF).

Reasoning or evaluation of the context is described by
extraction of new knowledge from the modeled data of the
available context [147]. This step can be divided into three
phases: i) pre-processing of context data to eliminate inac-
curate values; ii) fusion of sensor data to generate more
precise information; iii) context inference to obtain new
context information from lower-level context sources [31].
Techniques for processing the contextual available input can
be classified as learning or inference, as follows:
• Supervised Learning. It is a classification technique
that maps the input context sets to an expected output,
in order to generate a function able to yield results
from labeled training data. Examples: Decision Trees,
Bayesian Networks (BN), Artificial Neural Networks
(ANN), Support Vector Machines (SVM);

• Unsupervised Learning. It is a self-learning cluster-
ing technique that discovers features of the input con-
text, based on unlabeled data. Examples: K-Nearest
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Neighbors (k-NN), Kohonen Self Organizing Map,
Noise and Outlier Detection;

• Deep learning. It is based on ANN that use multiple lay-
ers to progressively extract higher level features from the
input context. The networks are capable of unsupervised
learning from the interaction experience with the envi-
ronment, resulting in improved performance of the task.
Examples: Multilayer Perceptron (MLP) Neural Net-
work (NN), Back-Propagation NN (BP), Convolutional
NN (CNN), Recurrent NN (RNN), Long Short-Term
Memory NN (LSTM);

• Rule-based. The algorithm is in the form of tradi-
tional ‘‘if-then-else’’ schemes. Another alternative is
the association of IDs to entities (e.g., radio-frequency
identification);

• Fuzzy Logic. It is known for reasoning about vague
information, based on ‘‘degrees of truth’’ rather than
the usual ‘‘true or false’’ Boolean logic. Fuzzy logic is
intended to approximate the truth, where the confidence
values represent degrees of membership rather than
probability. It resembles human reasoning and natural
language;

• Probabilistic. The method infers a decision based on
the probabilities associated with the real facts, han-
dling uncertainty. Examples: Dempster-Shafer, Hidden
Markov Models (HMM) and Naïve Bayes;

• Ontology-based. The reasoning is handled based on
ontology modeled data, using semantic Web languages,
such as RDF, RDF schema (RDFS), and OWL. The
possibility to combine them with ontology modeling
makes this reasoning more advantageous.

Dissemination of the context-related information is the
final step towards the consumers (e.g. users or applications)
in the process of decision making in CPSs. The following
features are required for this step: high available context
information and real-time distribution. From the usage point
of view, we further distinguish between two approaches:
• Query. The context-related information is disseminated
when the context consumer issues a query for updates;

• Subscription. The information is revealed to the cus-
tomer triggered by events, based on apriori settings with
the context management system.
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