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Abstract—In this paper we introduce a methodology for
adapting a population model to the actual patient dynamics, i.e.
an individualization of target controlled infusion (TCI) based
infusion. The solution proposed in this paper is to use the
effect site concentration (Ce) of the drug into the patient as a
feedback signal and to adapt the parameters of the Hill curve
(relating the BIS and Ce) during the induction phase, resulting
in a patient-individualized closed loop control of anesthesia. This
allows moving from conventional generic patient models for drug
infusion regulatory loops to personalized medicine.

Index Terms—model-based control, anesthesia modeling, drug
delivery systems, personalized healthcare.

I. INTRODUCTION

Drug delivery systems play a crucial role in clinical practice.

Therefore, control strategies applied to drug delivery systems

will lead to a longer and healthier life of patients worldwide.

An optimal control strategy should ensure the following:

• on-line and fast calculation of the optimal drug dose;

• model adaptation according to the patient state (person-

alized healthcare);

• patients safety;

• side effect reduction by means of drug infusion rate

optimization.

First and the most important challenge is patient safety

followed by issues such as: acceptance of the medical staff to

what the engineering community is offering, communication

between physicians and engineers due to different terminology.

Besides, all these social challenges, difficulties from the mod-

eling point of view have to be tackled (e.g. inter- and intra-

patient variability, time and dose constrains, etc.). Despite all

these difficulties, control of biomedical applications hold a

tremendous promise.

In clinical practice target controlled infusion (TCI) systems

are used for drug infusion [1]. Target controlled infusion

principle is the following: the anesthesiologist decides the

necessary concentration to achieve the desired effect as fast

as possible without overdosing. Concentration is calculated

using a pharmacokinetic model that takes into account the

patient biometric parameters (e.g. age, weight, height, etc).

TCI system is based on open-loop control strategy entitled to

adjust drug concentration in the blood. Drug regulation is done

by giving an initial bolus and followed by infusion.

Control of biomedical applications requires the same ele-

ments as any other process control application. These compo-

nents are: a system to be controlled (the patient), a controlled

variable that measures the relevant drug effect, a setpoint for

this variable, and actuator, which could be the infusion pump

driving the administration of drug and last but not least a

controller to manipulate the actuator. In model-based control

strategies the availability of a model is necessary.

The standard modeling strategy which has been commonly

used to describe the relationships between drug inputs and

patient output indicators (or effects) is that of compartment

models [1]. Pharmacokinetic (PK) compartment models are

widely used as means of predicting the distribution of drug

in the body by modeling the simultaneous diffusion of drug

through body tissues and the blood flow [2]. Most drugs are

characterized by models containing a central compartment,

which typically is represented by blood, and peripheral com-

partments that represent groupings of internal organs and fatty

tissues of the body. A virtual effect compartment may be

included, typically consisting of a nonlinear pharmacodynamic

(PD) model plus a first order linear time invariant system that is

used to reflect the time-lag in the patient response to anesthesia

(see [3], [4], [5] for details).

In this paper we introduce a methodology for adapting

a population model for Propofol induced hypnosis to the

actual patient dynamics, i.e. an individualization of TCI based

infusion. This allows moving from conventional generic patient

models for drug infusion regulatory loops to personalized

medicine. The structure of this paper is as follows: In Section

II the model of Propofol hypnotic is given. In this section

an updated overview of the model used nowadays in clinical

practice is presented. Section III describes the current status

of control strategies applied to anesthesia, missing pieces and

challenges to tackle with towards a fully automated drug

delivery system. This is followed by Section IV, results are

presented and discussed. Conclusions are presented in the last

section of the article.

II. PROPOFOL HYPNOSIS

For a large number of surgeries (e.g. heart surgery, brain

surgery, orthopedy, etc.) the patient has to be fully anesthetized.

The anesthesia paradigm is defined as a combination of three

main components: (1) hypnosis, (2) neuromuscular blockade

and (3) analgesia. Hypnosis is characterized by unconscious-

ness, inability of the patient to recall intra-operatory events.
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Neuromuscular blockade is preventing unwanted movement or

muscle tone and causes paralysis during surgical procedures.

Analgesia is characterized by absence of pain perception. In

order to control the depth of anesthesia by means of model-

based control strategies, a model which captures the dynamics

of the patient is required [6], [7].

The selection of the model input and output variables is

crucial for achieving optimal control [8], [9]. Pharmacokinetic

and pharmacodynamic blocks denote compartmental mod-

els [2]. The Pharmacokinetic/pharmacodynamics models most

commonly used for propofol and remifentanil are the 4th order

compartmental model described in [10], [11], [12] Pharma-

cokinetic/pharmacodynamics models represents an important

step in the process of drug development and this modeling tool

also brought a significant contribution to anesthesia. Pharma-

cokinetic/pharmacodynamics models are a set of mathematical

equations used to predict the drug effect in time. A schematic

representation of a three compartmental model is presented in

Figure 1. In this figure V1, V2 and V3 represents the volume

for the corresponding compartment.

Fig. 1. A schematic representation of a three compartmental model.

Compartmental analysis is based on mathematical models,

i.e. systems of ordinary differential equations (see equations

1-4) which are widely used to characterize the uptake, distri-

bution and elimination of a drug into the human body.

ẋ1(t) = k12x1(t)− k13x1(t)− k10x1(t)− k1ex1(t)

−k21x2(t) + k31x3(t) + u(t)/V1

(1)

ẋ2(t) = k21x1(t)− k12x2(t) (2)

ẋ3(t) = k13x1(t)− k31x3(t) (3)

ẋe(t) = k1ex1(t)− ke0xe(t) (4)

The peripheral compartments two and three model the drug ex-

change of the blood with well and poorly diffused body tissues.

The amount of drug in fast and slow equilibrating peripheral

compartments are denoted by x2 and x3, respectively. The

parameters kji for ij, denote the drug transfer frequency from

the jth to the ith compartment and u(t) [mg/s] is the infusion

rate of the anesthetic drug into the central compartment.

An additional hypothetical effect compartment was proposed

to represent the lag between drug plasma concentration and

drug response. The amount of drug in this compartment is

represented by xe. The effect compartment receives drug from

the central compartment by a first-order process and it is

regarded as a volume-less additional compartment. Therefore,

the drug transfer frequency from the central compartment to

the effect site-compartment is equal to the frequency of drug

removal from the effect-site compartment.

The parameters of the pharmacokinetic models depend on

age, weight, height and gender [10], [11], [12] and can be

calculated for Propofol as follows :

V1 = 4.27[l] V3 = 2.38[l]
V2 = 18.9− 0.391 · (age− 53)[l]

(5)

Cl1 = 1.89 + 0.0456(weight− 77)−
0.0681(lbm− 59) + +0.0264(height− 177)[l/min]

(6)

Cl2 = 1.29− 0.024(age− 53)[l/min] (7)

Cl3 = 0.836[l/min] (8)

k10 = Cl1

V1
[min−1]; k12 = Cl2

V1
[min−1]

k13 = Cl3

V1
[min−1]

(9)

k21 = Cl2

V2
[min−1]; k31 = Cl3

V3
[min−1]

ke0 = 0.456[min−1]
(10)

where lbm represent the lean body mass, Cl1 is the rate (called

also clearance rate) at which the drug is cleared from the body,

Cl2 and Cl3 are the rates at which the drug is removed from

the central compartment to the other two compartments by

distribution.

The lbm for man and women is calculated using the

following expressions:

lbmm = 1.1 · weight− 128 · weight2

height2
(11)

lbmf = 1.07 · weight− 148 · weight2

height2
(12)

The relation between the effect site concentration and the

Bispectral Index (BIS) is given by a nonlinear sigmoid Hill

curve:

BIS(t) = E0 − Emax
Cγ

e (t)

Cγ
e (t) + Cγ

50

(13)

where E0 is the BIS value when the patient is awake; Emax

is the maximum effect that can be achieved by the infusion

of Propofol; C50 is the Propofol concentration at half of the

maximum effect and γ is a parameter which together with

the C50 determines the patient sensitivity to the drug. E0 and

Emax are considered equal to the value of 100.

A. Adaptation of the Hill curve parameters for patient-
individualized anesthesia control

Since the most important challenge for control is the inter-

and intra-patient variability [6], [7], [9], it makes sense to adapt

the parameters of the Hill curve to fit the actual Hill curve of

the patient instead of a nominal one. The main disadvantage,

with nominal Hill curve parameters is that of under- or over-

dose. The available measured BIS values and the calculated Ĉe
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from the 4th order pharmacokinetic-pharmacodynamic model

are related by the linear approximation and the time delay [13]:

BIS(t) = K ∗ Ĉe(t− τ) + d (14)

where the time delay τ is fixed and K and d are estimated

at every sample time for every preselected time delay value.

Notice that in steady-state, the time delay is not necessary

since

BISss = K̂C∗e + d̂ (15)

which allows to extract and hence to adapt the desired C∗e for

a desired BIS value at every sample time. In the context of

TCI, adapting C∗e will provide a more accurate drug dosing.

In fact, for a desired BISss of 50, this is nothing else than

the estimation of the C50 of the patient. The estimation is

based on a classic linear least squares algorithm and the error

is calculated using the following expression:

σ2 =
1

N

N∑
i=1

ε2(i) (16)

with N the number of samples (if a sliding time interval is

used) and ε the error between the real and estimated values.

Notice that in case of Ce = Ĉe then the pharmacokinetic-

pharmacodynamic model is accurately describing the patient.

However, the adaptation of K and d parameters imply that the

pharmacokinetic-pharmacodynamic model does not necessar-

ily need to be perfectly known. Any error in its gain will be

corrected intrinsically by correcting the error in the Hill curve.

B. Analysis of the Hill curve parameters

Consider again the form of the sigmoid Hill curve from

(13). Introducing X = Ce

C50
we have:

Xγ =
E0 − E

Emax − E0 + E
(17)

with E the effect of the drug (i.e. BIS). The derivative, i.e. the

slope of the nonlinear curve, is given by:

dE
dX = −Emax[

γXγ−1

1+Xγ − XγγXγ−1

(1+Xγ) ] =

−Emaxγ
Xγ−1

(1+Xγ)2

(18)

using
Xγ

1 +Xγ
=

E0 − E

Emax
(19)

it follows that the derivative with respect to Ce can be written

as:

dE

dCe
=

dE

dX

dX

dCe
=
−Emaxγ

C50

1

Xγ−1[ Xγ

1+Xγ ]2
(20)

and using X = Ce

C50
we obtain:

dE

dCe
=
−γ
C50

(−Emax − E0 + E)(E0 − E)

Emax
(21)

which suggests that the slope of the Hill curve depends not

only on the γ values, but also on the ratio (−γ)/C50. For the

case that Emax = E0 = 100 it follows that:

dE

dCe
=
−γ
C50

E(100− E)

100
(22)

and for the case E = 50 we have that:

dE

dCe
= −25 γ

C50
(23)

The latter relation can be then used to obtain the slope of the

patient and determine the actual sensitivity to the drug effect,

which changes in time during clinical interventions.

III. MODEL BASED CONTROL STRATEGY FOR ANESTHESIA

In this section the challenges from the control point of view

are presented. From the perspective of control system, three

levels of complexity can be distinguished. The basic procedure

is the open-loop practice in which the anaesthetist, according to

the parameters of the patient (age, weight, sex, ASA) directly

uses predefined infusion rates of hypnotic drugs. According

to the response observed through patient vital signs the drug

rates can be modified (the anesthetist is then the controller).

Fully automated drug delivery systems for anesthesia will

be an important step forward in clinical practice. It contributes

to patient safety and reduces the workload of the anesthesiol-

ogist while providing him more flexibility to focus on critical

issues. Moreover, a cost reduction and a faster return of the

patient to daily duties will be achieved [1]. There is significant

research in the area of individualized patient models and closed

loop control strategies for anesthesia [8], [14], [15].

In Figure 2 a schematic representation of a feedback control

strategy from the drug delivery point of view in anesthesia

is presented. Note that all these control strategies require the

availability of a patient model. Obviously, the more accurate

the model, the better the performance of the closed loop, i.e.

lesser chance for over- and under-dosing.

The closed loop control scheme consists of:

• the syringe pump, as the actuator;

• the patient, as the system to be controlled;

• the monitoring device, which can be considered as the

measurable representation of the system to be controlled;

• the controller, which is represented by the anesthesiologist

(when no feedback control is implemented) and by the

computer (when feedback control is implemented) and

in this case the role of the anesthesiologist is that of a

supervisor.

The work of [16], [17] showed that PID controllers can

ensure intraoperative hemodynamic stability and a faster re-

covery of the patient can be achieved. Moreover, the work of

Absalom [18], [19], [20] presents the improved performance

of the closed loop control over manual operation. In the

last years, massive research focused on advanced control of

anesthesia has been done. Several approaches on the control

structure, controlled variables and model prediction have been

investigated. In [21], [22], [23] the use of drug concetration

in the brain has been used as a controlled variable. From the

control structure point of view, model based predictive control

technique has been also investigated [14], [15], [6], [9].

2489



Fig. 2. Schematic representation of a feedback control strategy for drug
delivery in anesthesia.

IV. RESULTS AND DISCUSSIONS

For the purpose of illustrating the efficacy of the proposed

strategy for model adaptation, Table 1 presents the changes

occurring in the Hill curve. We assume the patient changes

its drug effect (pharmacodynamics) dynamics from a sensitive

case to a resistant case (this is also the case in practice). Take

for example a dry sponge put in the water for the first time.

The amount of water in this case will be much lager then if the

sponge would be apriori wet. During anesthesia, the reaction

at molecular levels of the GABA receptors is dependent on

previous state [1].

The nominal setpoint C∗e = 5mg/ml will be used during

the target controlled infusion strategy. After ΔBIS, ideally,

one should apply closed loop (feedback based) control, e.g.

PID control. However, the setpoint needs to be specified. The

adaptation strategy adapts the setpoint and thus converges to

the true C50 value at all times.

The intra-patient variability in the Hill curves is shown

in Figure 3 using values from Table 1 and (13). It can be

observed that at first the patient is the most sensitive to drug

effect. The estimated sensitivity (gain) and the corresponding

C50 values are given in Figure 4 below. It can be observed

that the gain at the beginning is an order of the magnitude

higher than at the end of scenario. Without an adaptation from

the nominal values, any control strategy will be sub-optimal

(possibly unstable) when facing such high variations in the

gain in the closed loop.

One can note from Figure 4 that there are also significant

changes in the C50 values. Any target controlled infusion

Fig. 3. Changes in the Hill curve in time for our hypothetic patient as given
in Table 1

C50 γ
6.15 6.89
6.76 4.29
8.44 4.10
6.56 4.12
4.93 2.46

12.00 2.42
6.33 2.24
6.44 2.18
8.02 2.10
4.95 1.84
4.82 1.85

13.70 1.65
7.42 3.00

TABLE I
PATIENT PARAMETERS AS IN (13) USED FOR ESTIMATION OF THE NEW

SETPOINT

Fig. 4. Sensitivity (gain) and C50 values from Table 1.

system based on specifying Ce to achieve the nominal C50

will face significant modeling uncertainty. The result of our

adaption algorithm is given in Figure 5. Notice that in this

case the estimation was reinitialized at a fixed time interval

(600 seconds) at the nominal value for C50. This approach

has some advantage that at certain times (2400, 5400 seconds,

etc.) the steady state value is closer to this nominal value
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Fig. 5. Estimation of the C50 values.

than to the previously estimated value. However it also has

some disadvantages, since in most of the cases the true C50

value lies quite far from the nominal one. This drawback

is a counteracted by the relatively fast convergences of the

least square estimation algorithm due to the simplicity of the

approach (i.e. (15) represents a line).

The particular approach of estimating a line is based on

the fact that after the hypnosis induction phase, the BIS

value will remain in the 40-60 interval in the condition of

target controlled infusion regulation or PID control. In this

paper, however, the identified C50 can be used to derive the

corresponding γ values and use these in (13) for obtaining the

Hill curve of the patient at all times.

V. CONCLUSIONS

This paper proposes a simple yet effective methodology to

estimate the patient sensitivity to drug effect during Propofol

hypnosis. Hypothetic case of intra-patient variability was used

to demonstrate the effectiveness of the proposed strategy. The

result of this work can be further explored by introducing

model-based closed loop feedback control such as PID or

advanced control strategies.
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