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Variable Time-Delay Estimation for Anesthesia
Control During Intensive Care

Clara M. Ionescu*, Member, IEEE, Ramona Hodrea, and Robin De Keyser

Abstract—The presence of artifacts plays a crucial role in au-
tomatic sedation systems and may introduce variable time delays
(TDs) in the closed-loop-control structures. This paper presents a
successful procedure to estimate the varying TD of the bispectral
index (BIS) monitor used in closed-loop control during intensive
care. The TD estimation (TDE) is based on the cross-correlation
analysis technique and the method is validated with real measured
signals of propofol and BIS. Extended prediction self-adaptive con-
trol is used in combination with a Smith predictor to reduce the
computational burden imposed by the variable TD. The conclusion
is that an online TDE of the BIS monitor improves the performance
of the closed-loop system for reference tracking, disturbance rejec-
tion, and overall stability.

Index Terms—Anesthesia control, cross-correlation analysis,
dead-time compensation (DTC), intensive care unit, model-based
predictive control (MPC), time-delay estimation (TDE).

I. INTRODUCTION

ACCURATE sedation using a combination of hypnotics
and analgesics has become an integral part of critical care

practice in minimizing patient discomfort and decreasing mor-
tality rate [1]. Clinical experience with critically ill patients has
revealed that standard dosing guidelines result often in an inap-
propriate under- or oversedation leading to increased morbidity
and mortality due to huge interpatient pharmacological vari-
ability [2]. The benefit of automated closed-loop control is that
the drug delivery is continuous, as opposed to intermittent con-
trol (i.e., standard practice). One major problem for the control
algorithms is that it has to deal with erroneous feedback infor-
mation, biased either by the presence of artifacts or by patient
model mismatch [3]. In biological systems, such erroneous in-
formation often originates from artifacts (e.g., eye movement,
leg movement, coughing, sneezing, choking, shivering), which
decrease the quality of the measured signals leading to complex
numerical filtering techniques. The latter require longer com-
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putation times, hence introducing artificial time delays (TDs),
which vary from one time instant to another, dependent on the
signal quality [4]. If not dealt-with appropriately, such varying
TDs are a source of poor feedback control.

Advanced control techniques such as model-based predictive
control (MPC) can successfully deal with variable TDs, nonlin-
earities, and input and output constraints [5]. Since MPC relies
on the availability of a patient model, it is important to provide
accurate information to the controller in order to maximize its
performance. In the case of anesthesia, the TD varies between
40–180 s, and it is important that its value is known at all times
and taken into account by the control strategy.

To estimate the TD, some authors have used the concept
of group delay, which is defined as the variation of the phase
with respect to the frequency [6]–[8]; but this technique can be
applied only when there is a fixed TD between the input and
output signals [9]. Moreover, it has been shown that a negative
group delay can be obtained in simple systems as a bandpass
filter, erroneously indicating that the signal output is produced
before the input signal [10].

Other linear methods for TD estimation (TDE) use the Hilbert
transform to link the transfer function of a minimum phase sys-
tem with the logarithm of its gain [6], or the Hilbert transform
in presence of noise [11], [12]. The cross-correlation analy-
sis is the simplest and probably the most widely applied tech-
nique to estimate TD [13]. The TDs are usually not fixed, but
vary in time, and different approaches have been recently pro-
posed to tackle this problem in the field of biomedical appli-
cations [14]. Although most methods are based on parameter
estimation, a parametric model that represents the relationship
between the input and output signals is not always available.
Hence, it is necessary to make use of nonparametric estimation
methods.

The aim of this contribution is to introduce and validate a
TDE method based on the correlation analysis to overcome
the lack of TD information in online clinical trials for closed-
loop sedation in ICU. The TDE is then used in the prediction
model of the extended prediction self-adaptive control algorithm
(EPSAC) [5]. The TDE method is tested with real clinical data
from ICU patients showing good agreement with TD values
reported in the specialized literature.

The paper is structured as follows. In Section II, the materials
and the theoretical framework regarding the cross-correlation
analysis and the procedures used are presented. The TDE re-
sults obtained for several patients are shown in Section III.
The performance analysis for the different TDE procedures is
realized in Section IV, and the conclusion is summarized in
Section V.

0018-9294/$26.00 © 2010 IEEE
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Fig. 1. Schematic representation of the TDE from correlation functions.

II. MATERIALS AND METHODS

A. Time-Delay Estimation

Three methods are presented for TDE: offline; semionline;
and online; all based on the cross-correlation technique. The
cross-correlation function between two sampled signals u(m)
(cause) and y(m) (effect) measures the degree of correlation
[15]. The cross correlation is defined by

Ruy (τ) = E{u(m)y(m − τ)} (1)

where τ is the lag, and E{•} denotes the expected value and
m is the sample. A common estimator used in practice for the
cross correlation is defined by

Ruy (τ) =
1
N

N −τ−1∑
m=0

u(m + τ)y(m), 0 ≤ τ ≤ (N − 1)

(2)
where N is the total number of measured samples. This function
is often normalized and expressed as follows:

R̂uy (τ) =
Ruy (τ)√

σ2
uσ2

y

(3)

where σ2
u is the variance of the input signal u(m)

σ2
u =

1
N

N −1∑
m=0

u(m)2 . (4)

The variance of the output signal σ2
y is analogously defined.

The result of the cross-correlation function is multiplied by a
Blackman–Harris window to reduce leakage effects [14].

A minimum value of the cross-correlation function between
the propofol input and the real bispectral index (BIS) can be
found at time τr , as depicted schematically in Fig. 1. The value
of τr denotes the summed effect between the measured dynamic
response and the unknown TD introduced by the BIS monitor. In
order to estimate the value of this TD, the propofol signal is ap-
plied to the patient model and a simulated BIS signal without TD
is obtained. Performing the cross-correlation analysis between
these two signals, a minimum value of the cross-correlation
function can be found at time τs . This τs is related only to the
dynamic response of the patient (no instrumentation delay). The

TD introduced by the BIS device is then calculated as follows:

τd = τr − τs. (5)

The first TDE algorithm denotes an offline method, which ap-
plies the cross-correlation analysis using the entire number of
samples from the propofol and BIS signals. As such, this method
is only used to gather insight upon the expected value of the TD,
but it cannot be used for control purposes in online computa-
tions. To detect changes in TD, one can estimate the TD by
applying the cross-correlation analysis over windows of 256
samples (i.e., semionline method). For an online monitoring of
the changes affecting the values of TD, it is necessary to use
sliding windows; in this case, we make use of a 256 sample
window, slided every sample.

B. EPSAC With Variable TDE

In a discrete time formulation, the objective of a model pre-
dictive controller is to find the future process input sequence
that optimizes a cost function over a certain prediction hori-
zon (N1 , . . . , N2). Thus, at each sampling instant, the process
model expressing the nonlinear dynamic relationship between
the process output y and the manipulated process input u (i.e.,
y(t) = f [y(t − 1), . . . , u(t − 1), . . .]) is used to produce output
predictions. The future control sequence is the solution of an
online optimization problem, which typically consists of mini-
mizing the summed squares of the predicted output deviations
from the setpoint r

min
u(t|t),...,u(t+Nu −1|t)

J =
N2∑

k=N1

[y(t + k|t) − r(t + k|t)]2 (6)

where y(t + k|t) denotes the prediction of the process output
at discrete time instant t + k based on information available
up to the discrete time instant t, and r(t + k|t) is the setpoint.
Commonly, only Nu components of the future control sequence
are allowed to vary, inputs beyond the control horizon Nu are
set to the last computed value: u(t + j|t) = u(t + Nu − 1|t),
j = Nu, . . . , N2 − 1.

Considering a receding horizon mechanism, only the first
component out of the Nu optimal control moves is applied to
the process. The rest of the control sequence is discarded and
the entire procedure is repeated at the next sampling instant.

Compared to the current standard MPC strategies, EPSAC
considers the process output predictions as being the sum of two
parts: 1) a term that is independent of the future control actions
ybase and represents the result of past control actions ubase ; and
2) a term that depends linearly on the future control actions as a
result of the optimal control action δu [5]. This allows to obtain
an analytical solution in the case of unconstrained control, or
a well-known quadratic programming solution in the case of
constrained control. In both cases, this leads to a quick solution
of the MPC problem with low-complexity software compared
to the more general optimization solvers.

For a variable TD, however, the values of N1 and N2 vary with
the dead-time index. In order to avoid complex matrix manipu-
lations (varying matrix sizes every sample time), an alternative
solution for controlling processes that present significant and
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Fig. 2. Schematic representation of the TDE in the EPSAC closed-loop con-
trol. See text for nomenclature.

varying dead times is to make use of a dead-time compensator
(DTC). The Smith Predictor (SP) was the first control system
proposed in the literature that included a DTC, and is perhaps
one of the most widely used methods to compensate the vari-
able TD problem [16]. The combination of the filtered SP with
the EPSAC, namely, SP-based EPSAC (SP-EPSAC), provides
a control strategy for linear processes with variable TD [17].

In this paper, we design a predictive controller with con-
stant design parameters (N1 , N2), as schematically depicted in
Fig. 2. The patient model consists of the three compartmen-
tal model from [18]. At each sampling instant, the delay-free
patient model output x(t) is calculated using the stored values
[x(t − 1), . . . , u(t − 1), . . .]. At the same sampling instant, the
variable TD is computed from (5). Once the number of TD sam-
ples Nd is known, x(t − Nd) can be selected out of the stored
x-values, such that z(t) = x(t − Nd). In such an approach, the
minimum prediction horizon is no longer varying and obviously
equal to one. Hence, the maximum prediction horizon remains
constant.

C. Patient Model for Prediction

The MPC strategy makes use of a prediction model, hence,
the patient’s pharmacokinetic (PK) and pharmacodynamic (PD)
models are necessary to predict the BIS output as a result of
propofol infusion. The PK model describes the distribution of
propofol in the patient’s body, while the PD model describes the
relationship between propofol concentration in the blood and its
clinical effect. The generalized PK–PD model for propofol is
depicted in Fig. 3. The propofol PK–PD mathematical model,
the rates of drug metabolism or elimination, the rates of drug
transfer between different compartments, and the volumes of
distribution are taken from [18].

In this figure, x1 denotes the amount of drug in the central
compartment (blood) and its units are milligrams (mg). The
peripheral compartments model the drug exchange between
the blood and the other body tissues. The amount of drug in
these compartments is denoted by x2 (muscle tissue) and x3 (fat
mass), respectively. The constants kij , for i j, denote the drug

Fig. 3. PK–PD compartmental model of a patient for propofol effects on BIS.

transfer frequency from the jth to the ith compartment and its
units are min−1 .

The propofol concentration in the effect-site compartment is
given by Ce , and its units are micrograms per milliliter (μg/ml).
Ce is directly related to the measured drug effect and to quan-
tify this effect during real time monitoring, the BIS monitor is
used. This device displays a monotonous measure of depth of
anesthesia in a range from 0 to 100. The measured BIS can be
related to the effect-site concentration Ce by the empirical static
but time-varying nonlinear relationship, called also the Sigmoid
Hill Curve

BIS(t) = E0 − Emax · Cγ
e (t)

Cγ
e (t) + Cγ

50
. (7)

E0 is the BIS value when the patient is awake; Emax is the max-
imum effect that can be achieved by the infusion of propofol;
C50 is the propofol concentration at half maximum effect and
represents the patient sensitivity to the drug; and γ determines
the steepness of the curve. Since these parameters are unknown
and different for each patient, some nominal values have been
used for the simulations. The nominal value for C50 is 2.5 μg/ml
and for γ is 3.01. The other two parameters of the Hill curve,
Emax and Eo are considered equal to the value of 100 [19].

D. Synthetic and Clinical Data

To validate the accuracy of the TDE algorithm, the PK and PD
patient models are used in a simulation scenario with a variable
TD τd shown in Fig. 4 in order to reproduce the conditions of
the BIS monitor and the artifacts present in the ICU. Hence, the
synthetic BIS signal had a known TD between 10 and 200 s.
Additionally, a random (colored) 10% noise is included to the
system output in order to represent the disturbances recorded in
the BIS monitor. The additional noise level makes the synthetic
BIS signal to vary with ±3 units around the setpoint, as shown
in Fig. 4.

Once the accuracy of the TDE has been proven, one can obtain
the TDs from clinical ICU trials. The biometric values of the 11
patients selected for this study are given in Table I. All these pa-
tients have undergone cardiac surgery prior to ICU, in the Ghent
University Hospital, and the data have been recorded for 6–7 h.
The BIS reference has been modified by the ICU nurse when-
ever necessary and oscillated between 40–55 BIS values. Effects
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Fig. 4. Synthetic propofol, BIS, and TD signals used to test the accuracy of
the TDE procedures.

TABLE I
BIOMETRIC VALUES OF THE PATIENTS SELECTED FOR THIS STUDY; ALL THE

PATIENTS WERE MALE, EXCEPT PATIENTS 6 AND 8

from other drug administered prior to ICU (from surgery) and
during ICU period have not been taken into account. From a
closed-loop control point of view, they are regarded as distur-
bances. All effects on BIS, which are not coming from propofol
directly are viewed as model mismatch.

EPSAC strategy was used to control the level of sedation,
namely the BIS. The EPSAC prediction model used the PK–PD
model with a nominal Hill curve and an initialized TD = 10 s.
The parameters of the PK-PD model were calculated for each
patient, based on the biometric values previously presented.
Consequently, the real signals of propofol and BIS used for
the estimation of the TD were obtained. As an example, Fig. 5
shows the propofol and BIS signals administered in closed loop
to patient 9 during ICU. The MPC–EPSAC closed-loop control
is applied with a prediction horizon of N2 = 10 samples, a
control receding horizon of Nu = 1 and N1 = 1 samples, and a
sampling period of 10 s.

E. Evaluation Criteria

For each TDE method, the corresponding error is calculated
with the following formula:

MSE =
1
N

N∑
k=1

|y(k) − ŷ(k)|2 (8)

Fig. 5. Real propofol and BIS signals recorded in ICU.

Fig. 6. Illustrative example: (a) CCF between synthetic propofol and BIS
signals with known TD of 15 samples; and (b) CCF between synthetic propofol
and BIS signals without TD.

where y(k) is the synthetic, respectively, the measured BIS sig-
nal from patient, and ŷ(k) is the predicted output with estimated
TD.

III. RESULTS

A. From Synthetic Data

As an illustrative example that the concept described in
Section II-A works, Fig. 6 shows the normalized cross-
correlation functions (CCFs) obtained with the offline algo-
rithm, using the biometric values of patient 9. The difference
between the minimum values of each CCF is 15 samples (i.e.,
150 s), validated by the artificial (i.e., known) TD introduced in
the simulator.

Different delays are obtained for each window when the
semionline TDE algorithms is applied to detect the (known)
TD from Fig. 4. For instance, for patient 9, we obtain: 50 s for
the first window, 140 s for the second window, 170 s for the
third window, 70 s for the fourth and fifth windows, 180 s for
the sixth window, 170 s for the seventh window, and 80 s for the
last window.

Finally, the online TDE algorithm uses the cross-correlation
analysis by means of a sliding window of 256 samples along the
synthetic signals. This algorithm is performed for each patient



IONESCU et al.: VARIABLE TIME-DELAY ESTIMATION FOR ANESTHESIA CONTROL DURING INTENSIVE CARE 367

Fig. 7. TDE for each patient using the online TDE algorithm.

Fig. 8. (a) Detailed presentation for tracking and (b) disturbance rejection: (a)
offline; (b) semionline; and (c) online TDEs.

and the results are depicted in Fig. 7. Smaller differences be-
tween the synthetic TD and the estimated TD can be observed
in case of the online algorithm.

The variation in performance by means of the mean squared
error (MSE) were 70.03 ± 2.26 for the offline method, 7.39 ±
1.68 for the semionline method, and 7.84 ± 1.29 for the online
method.

B. EPSAC With Adapted TD

The final objective is to improve the control performance by
using the estimated TD to update the prediction model of the
EPSAC algorithm. The performance of the closed-loop system
with the TD information for tracking reference BIS values is
evaluated. Furthermore, the disturbance rejection is analyzed
when some step disturbances are applied to the output of the
closed-loop system. The overall performance of the simulated
closed-loop system obtained with the three methods in case of
patient 9, for both reference tracking and disturbance rejection,
is presented in detail in Fig. 8.

In order to validate the performance of the TDE in the closed-
loop system, the MSE was evaluated with (8). In this case, y(k)
is the reference BIS signal and ŷ(k) is the predicted output of
the closed-loop system. Table II presents the MSE obtained for
each patient.

TABLE II
MSE VALUES CALCULATED TO VALIDATE THE OVERALL PERFORMANCE OF

THE CLOSED-LOOP SYSTEM FOR TRACKING AND DISTURBANCE REJECTION

FOR EACH PATIENT

Fig. 9. Illustrative example for TDE on real signals from patient 9: (a) CCF
between real propofol and BIS signals with unknown TD; and (b) CCF between
real propofol and simulated BIS signals with nominal TD (1 sample).

C. Validation of the TDE on Real Clinical Signals

The same TDE methods are now applied using the real propo-
fol and BIS signals. Fig. 9 shows an illustrative example for the
cross-correlation (CCF) method in case of the offline method
for patient 9. The difference between the minimum values of
each CCF is 6 samples (60 s). It can be observed that in the case
of real clinical signals, the CCFs visibly have more than one
negative peak, suggesting that the difference between the two
signals does not consist of a pure TD.

The semionline algorithm used to estimate the TD applies the
cross-correlation analysis using small parts of the real propofol
and BIS signals. The estimated TD obtained for four windows
are given in Fig. 10(a).

The offline TDE had an average and standard deviation of
511 ± 186.5 for the MSE, respectively, and 207.3 ± 125.5 for
the TD, when tested on data from all patients. The semionline
TDE results are presented in Table III.

IV. DISCUSSION

For both synthetic and real signal validations, it is clear that
the online TDE provides the best performance in terms of both
clinical and control engineering benefits.
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Fig. 10. (a) Semionline TDE using (a) real BIS and (b) simulated BIS; and
(b) results of the online TDE using (a) real BIS and (b) simulated BIS, both
applied on the real signals recorded from patient 9.

TABLE III
MEAN SQUARED ERRROR (MSE) AND TIME DELAY ESTIMATION (TDE) FOR

EACH PATIENT WHEN THE CROSS-CORRELATION ANALYSIS IS APPLIED TO THE

REAL SIGNALS

The offline TDE provides biased information: an averaged
value of 147.27 s with a standard deviation of ±7.87 s for
TD variations between 10–200 s. Additionally, the MSE has
an average value of 70.03 with a standard deviation of ±2.26,
which again is a significantly high value compared to the MSE
obtained with semionline or online TDE algorithms. Moreover,
if the estimated TD is increased or decreased by a known amount
of samples (±Δτd) and the MSE is calculated again, then this
new MSE value can be higher or lower than the previous one.
This suggests that the initially calculated MSE value does not
guarantee the minimum error between the synthetic BIS signal
(with variable and known TD) and the BIS signal when the
estimated delay is inserted. The TD value corresponding to the
minimum value of MSE, in case of patient 9, is five samples
below the value calculated with this algorithm [see Fig. 10(a)],
i.e., Δτd = −5 samples.

For the semionline TDE, the averaged MSE value decreases
to 7.39 with a standard deviation of ±1.68. Also in this case, the
MSE value calculated initially does not guarantee the minimum
error between the synthetic BIS signal and the BIS signal when
the estimated delay with the semionline TDE algorithm is added.
For patient 9, the TD needed to obtain a minimum value for MSE
is one sample above the calculated value using this algorithm
[see Fig. 10(b)], i.e., Δτd = +1 sample.

Finally, when the online TDE is applied, the averaged MSE
value is similar to the semi-online TDE. However, in this case,
when the estimated TD for each time instant is increased or

decreased and the MSE is calculated once more, then these new
MSE values are always higher than the original one. This means
that the initially calculated MSE value guarantees the minimum
error between the synthetic BIS signal and the BIS signal when
the estimated delay with the online TDE algorithm is added.

Once the accuracy of the TDE algorithm has been tested, it
can be applied to the real signals. These TDEs are used to update
the information used in the prediction model for EPSAC. Once
again, the online TDE outperforms the other methods, providing
an averaged MSE value of 17.82 with a standard deviation of
±0.19. Hence, estimating a TD closer to the real value reduces
the modeling errors in the EPSAC, and therefore, the closed-loop
system performance is improved (see Fig. 8). Although similar
in terms of reference tracking, the online TDE outperforms the
semionline TDE for disturbance rejection.

While being in ICU, the dynamic response of the patient is
continuously changing (intrapatient variability). Additionally,
the signals recorded from the patient are corrupted by artifacts.
When these artifacts occur, the instrumentation delay increases.
As a result, the TD during disturbances is higher than that in
the moments without disturbances. The results obtained in this
study using these TDE algorithms are similar to those discussed
in [20]. When the estimation of the TD is applied on the clinical
data, the influence of the window size for the semionline method
defines the accuracy with which the TD variations are detected.
Therefore, fixed windows of 256 samples are used and the cross-
correlation analysis is applied on each window. The TD obtained
is between 10 and 400 s. If windows of 64 or 128 samples are
used, the method cannot find an accurate TD for some windows,
in which the processed signals are merely constant. When win-
dows of higher length are used (512 or 1024 samples), the
algorithm needs more time to estimate the TD. Thus, the MSE
is higher than that in the case when windows of 256 samples
are used, because the TD value of larger windows approaches
to the delay obtained using the offline algorithm. If the cross-
correlation analysis is applied using windows of 256 samples,
the algorithm estimates more often the TD and the accuracy
is of course higher. Therefore, the cross-correlation applied on
windows of 256 samples was considered the best choice for this
algorithm. This algorithm can be implemented online, but the
initialization of the algorithm is done using a nominal TD value.

When the cross-correlation analysis is applied using a sliding
window (i.e., online TDE algorithm), the estimated TD value
converges to the average values calculated using the semionline
algorithm. This is due to the fact that the algorithm uses some
stored measurements and the measurement in the current time
instant to estimate the TD. In this way, the online TDE algorithm
works properly when the TD is varying in time, even if the BIS
signal is corrupted with noise, because the calculated error is
acceptable from the standpoint of engineering.

As a general comment, the online TDE is a relatively sim-
ple method for detecting variations in TD during ICU, which
become significant in the presence of artifacts. The semionline
method may be a simplistic way to deal with inter- and intrapa-
tient variability, but it does not guarantee unbiased estimates.

A possible drawback of the method is that the TD may vary
significantly from one sample to another, if the BIS signal
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quality is very poor or highly correlated to other biological
effects (i.e., the correlation has an undetermined or biased min-
imum). Although no such cases have been encountered in our
study, there are currently clinical trials with the EPSAC con-
troller with TD adaptation on a group of ICU patients at Ghent
University Hospital, Belgium. These results will then provide
more insight into the accuracy of the adaptive TD EPSAC
controller.

V. CONCLUSION

In this paper, the cross-correlation analysis has been intro-
duced to estimate the TD originated from instrumentation (BIS
monitor) during ICU anesthesia. The TDE algorithm has been
tested preliminary on synthetic signals, ensuring its accuracy
for online estimation purposes. Further on, the TDE algorithms
have been tested on 11 patients from ICU clinical trials. The ob-
tained results are close to similar studies reported in literature.
Currently, the online TDE algorithm is introduced in an MPC
strategy, and tested in clinical trials for closed-loop sedation
control at Ghent University Hospital.
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