
Chaos, Solitons and Fractals 102 (2017) 4 41–4 46 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Data-driven modelling of drug tissue trapping using anomalous 

kinetics 

Dana Copot a , ∗, Richard L. Magin 

b , Robin De Keyser a , Clara Ionescu 

a 

a Ghent University, Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Research group on Dynamical Systems and Control, 

Technologiepark 914, 9052 Ghent, Belgium 

b University of Illinois at Chicago, Department of Bioengineering, (MC 063) 851 S Morgan St, 218 SEO Chicago, IL 60607, USA 

a r t i c l e i n f o 

Article history: 

Received 30 January 2017 

Revised 9 March 2017 

Accepted 14 March 2017 

Available online 30 March 2017 

Keywords: 

Modelling 

Fractional order derivative 

Diffusion 

Heterogeneous 

Recirculation 

Lag time 

Compartmental modelling 

Drug pharmacokinetics 

a b s t r a c t 

This work revisits the pharmacokinetic models derived from classical differential equations and proposes 

an extension to fractional differential equations to account for tissue trapping, which modifies the pre- 

dicted drug concentration profiles. Unlike monotonic decay profiles, an oscillatory behaviour is often ob- 

served. The phenomenon may be the result of the recirculation of trapped drug molecules due to the 

heterogeneity of the tissue combined with the local action of the liver or other organs in depositing part 

of the drug for later release. The proposed model alleviates this limitation in data fitting profiles, without 

violating mass balance principles and physiological states. The paper also points to new concepts and 

techniques in modelling drug pharmacokinetic dynamics to account for short- and long-time recircula- 

tion effects. As such, it provides a better characterisation of unexplained secondary effects in patients 

undergoing treatment. It also establishes a link to unbounded drug accumulation models. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Selecting appropriate models is a crucial step in capturing

omplex biological and physiological phenomena. Any choice of a

odel structure implies a simplified view of the interaction among

he various elements that may characterise a dynamical system.

n pharmacokinetics, a popular choice is that of compartmental

odels, due to their implicit simplicity and ease of understand-

ng in relation to the mass balance equations and assumptions for

niform distribution, homogeneous transient times and immediate

esponse to drug bolus administration [1] . Numerous works and

ecades of research have tailored their applicability for optimal

rug delivery assist devices in several domains of medical appli-

ations, e.g. diabetes [2] , cancer [3,4] , anaesthesia [5] , immunode-

ciency [6] and hormonal treatment [7] . 

Providing a best fit to data from observed drug concentration

rofiles implies the existence of some error tolerance intervals.

merging tools from fractional calculus have proven useful to im-

rove to a great degree the accuracy of dynamical models with

espect to classical integer order modelling theory [8,9] . The ac-
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eptance of these tools within the engineering community has led

erhaps to a significant step forward in terms of data driven mod-

lling and numerical simulation [10–13] . However, their acceptance

n clinical practice may require further tailoring for a better char-

cterization of patient variability [14–16] . 

Compartmental models are a traditional tool for modelling drug

harmacokinetics (PK) in applications of general anaesthesia. The

epth of anaesthesia regulatory problem consists of optimal cal-

ulation via such patient PK models of the amount of drug nec-

ssary to achieve a desired sedation level, irrespective of artefacts

nd disturbances [17] . Attempts to fractionalise PK compartmental

odels for anaesthesia have been done with simulated data. A net

dvantage however has not been shown, since secondary effects

ue to drug trapping were not accounted for at that time [18,19] . 

In this work an existing model for drug concentration profile

haracterisation is revisited in order to capture additional dynam-

cs which otherwise have been overlooked in all previous reports.

 complex interaction phenomena between tissue heterogeneity,

rug diffusion specificity, molecular binding and recirculation from

iver organ dynamics leads to unique drug concentration profiles

bserved in time. This paper introduces a data fitting algorithm

nd corresponding model structure to illustrate the added value

ith respect to the state of the art. Emerging tools from fractional

alculus, i.e. fractional order derivatives, are used to mimic hetero-

eneity among the various compartments in the pharmacokinetic
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models. Data from literature are used to examine the potential of

the proposed model for its best linear approximation. The model is

nonlinear in the parameters, with coefficients related to drug up-

take and clearance rates. 

The paper is organized as follows. The next section provides

a brief review of existing pharmacokinetic models for capturing

dynamic drug concentration profiles. The third section provides

the proposed model and explains physiological relevance and fur-

ther extensions. The fourth section delivers the simulation results

for better understanding model parameter effects and finally data

from literature is used to indicate its added value. The last section

summarizes the main outcome of this work and offers some per-

spectives. 

2. Anomalous kinetics 

The PK literature is dominated by compartmental models of

drug dynamics in human body, for a wide range of medical appli-

cation or treatment [20,21] . The mamillary compartmental model

with single compartment seems to be the simplest representation

of drug uptake and clearance, with the amount of a drug defined

by a simple ordinary differential equation (ODE) relation: 

dA (t) 

dt 
= −k 10 A (t) (1)

with A (0) the dose of bolus intake and K 10 is the clearance rate

constant. The solution, A (t) = A (0) · exp −k 10 t . However, usually 2-

3 compartments are taken into account and as to specify the het-

erogeneity between the blood, muscle and fat tissue dynamics.

It turns out that characterization as a function of time implies a

negative power function derived from plasma drug concentration

profiles [22] . Nevertheless, triexponentials with power and gamma

functions were successfully fitted to power law data and results for

several drug pharmacokinetics reported in literature [22] . An im-

portant decision at that time was to make observations on log-log

plots with y - data and x -time axis. A limitation of the data inter-

vals led to the use of gamma functions, assuming homogeneous

distribution of drug into the compartmental volume. The necessity

of several exponential terms to fit the data in linear regression al-

gorithms seemed at the time unavoidable. 

Later on, the necessity of a recirculation mechanism was to ac-

count for observed fluctuations in the time decay of a drug PK

[23,24] . The assumption that compartmental models were homo-

geneous no longer fit the observed data. However, since the tools

used to model the dynamical variability were ODEs, augmenting

the model with a residence time information was a solution at

hand. However, care must be taken when considering transient

and residence times, since the two notions are different in PK

specifications [23] . As stated in [23] , classical compartmental mod-

els fail to explain the effect of different sampling sites, due to

concentration differences across the various biological tissues. The

units of the PK compartmental models are confined to exponen-

tially distributed transit times. By contrast, recirculatory models

may be characterized by any parametric or non-parametric class

of drug transit time distributions. The choice of the model type

is thus important, and it greatly depends on the objective it may

serve. 

In an effort to circumvent the choice of the model type, non-

Markovian compartmental models were proposed [25] . Random

particle distribution and transfer based on retention times seem

adequate in capturing heterogeneous dynamic effects. The authors

provide an adapted view of the models from Weiss in assuming a

three compartmental PK model whereas one compartment is seen

as a distribution of pseudo-compartments with different retention

times. Clearly this is a more realistic approach since it enables phe-

nomenological observations of drug accumulation and/or late re-
irculation loops. Still, oscillatory behaviour in drug concentration

rofiles for a single bolus intake are ignored. A conceptual view of

uch model representation is given in Fig. 1 a. 

Tissue trapping was addressed by Weiss later in [26] , by

roposing a non-classical PK model describing well the persistently

ncreasing plasma concentration time curve during long term treat-

ent and the washout curve following terminal therapy. The long

ailed tissue residence time distribution is incorporated by means

f a recirculatory model. Weiss [26] also acknowledges the anoma-

ous kinetics and the fractal scaling property in characterizing

miodarone drug dynamics. A conceptual schematic of such dis-

ribution is given in Fig. 1 b. 

A decade later, emerging tools from fractional calculus enabled

 new wave of PK compartmental modelling theories, indicating

ome important flaws in the classical PK models. For example,

ulti-compartmental kinetics with fractional differential equations

FDEs) following consistent physiological mass balance rationale

ave been reported in [27] . Numerical methods to efficiently com-

ute these equations are largely available to the community and

imulations no longer pose tedious implementations. The great

evelation of these numerical studies was that the presence of a

ransfer rate of fractional order produces a non-exponential ter-

inal phase, while multiple dose and constant infusion systems

ever reach steady-state, resulting in drug accumulation. The lat-

er is a life-threatening issue for the patient and imposes a crit-

cal observation on the usefulness of previous PK compartmental

odel definitions. Deep tissue trapping may account for observed

econdary effects days, weeks and months in patients who under-

one surgery with general anaesthesia, or following cancer treat-

ent therapies. These new theoretical concepts and PK models

ay enable a different, novel perspective of drug kinetics. Such

odels more accurately predict the observed drug profiles and can

rovide an new basis for optimizing treatment. 

Conventional pharmacokinetic concepts fail to describe the long

erm pharmacokinetcis of the extremely cationic drug amiodarone.

lthough several clinical data on amiodarone pharmacokinetics

ave been published the disposition kinetics of this drug is still

ot well characterized. Drug tissue trapping has been addressed

lso in [28] using fractional kinetics and data on amiodarone from

26] . Significant differences in linear or logarithmic drug intake

rofiles have been observed in numerical simulations, suggesting

rug accumulation and inherent side effects in patient well-being.

he paper from [28] proposes a dosing regime to stabilise the

lasma concentration of amiodarone when fractional PK models

re used. Applications to cancer treatment using the frud dox-

rubicine have also been performed with similar conclusions [29] .

till, among all the previous works related to introducing anoma-

ous kinetics and fractional PK compartmental models one can-

ot but notice the fact that some effects of drug trapping and

eleasing are yet unaccounted for. Drug accumulation could have

mportant clinical implications and thus requires a solution to

each a steady state. Dokoumetzidis et al. [27] have shown that

lassical PK models with intravenous drug infusion predicts that

teady state will be reached while the compartmental PK model

ith fractional elimination predicts unbounded drug accumula-

ion. The aim of this paper is propose a revisited fractional or-

er PK model in order to test the hypothesis of preventing drug

ccumulation. 

Continuous random walk have been widely employed in fields

uch as physics, chemistry, life sciences, etc. Many biological

nd physical transport processes exhibit anomalous behaviour for

hich walker mean-squared displacement increases as a fractional

ower. Anomalous diffusion problems naturally arise in the set-

ings of complex biological environment. Modelling of diffusion in

ifferent com plex media could provide further understanding in

 variety of experimental conditions. Anomalous subdiffusion is
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Fig. 1. (a) Distributed compartmental PK models. A three-compartmental scheme is given with classical two compartments on the right side combined with a distributed 

drug retention times compartment on the left side. Notice that intermediate drug profiles x,y,z may vary locally due to tissue trapping. Note that all drug fluxes denoted by 

arrows may have different dynamics (FDEs) as opposed to classical ODEs. (b) A conceptual view of distribution of tissue dynamics with various residence times and drug 

trapping areas. (c) Two-compartmental PK model representation. The continuous arrows denote ODEs, whereas dashed arrows denote FDEs. 
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epresented by: 

 X 

2 (t) > ≈ t μ (2)

ith 0 < μ < 1. Subdiffusion could be used to model molecules of

rug trapped in deep tissue for long times. The subdiffusive frac-

ional Fokker–Planck equation can be employed as from [30] . Let

 ( x, t ) be the density function for finding the particle in the inter-

al (x, x + dx ) at the time instant t ; then 

∂ p 

∂t 
= −∂(v μ(x ) D 

1 −μ
t p) 

∂x 
+ 

∂ 2 (D μ(x ) D 

1 −μ
t p) 

∂x 2 
(3) 

n which D μ( x ) is the fractional diffusion and v μ( x ) is the drift,

ith μ < 1, and the Riemann–Liouville derivative is defined as 

 

1 −μ
t p(x, t) = 

1 

�(μ) 

∂ 

∂t 

∫ t 

0 

p(x, u ) du 

(t − u ) 1 −μ
(4) 

here we see the difference between the standard Fokker–Planck

quation and the its fractional version by means of the rate of re-

axation 

p(x, t) −→ p st (x ) (5)

hen using this equation to extract residence times, on the long

erm, as t −→ ∞ the non-homogeneous variations of the parame-

er μ as a function of space should be carefully checked. When a

ell performs a random walk it waits for a random time in space

efore making a jump to another point. The most important char-

cteristic of this movement is the transition rate for jumps at point

 . For continuous time random walks the following assumption is

ade: transition rate is dependent on the residence time. The res-

dence time is the time interval between two successive jumps of

he cell. Recent studies by [30–32] reported that the diffusion co-

fficient is a nonlinear function of the nonlinear reaction rate. In

his model [32] the escape rate T of a particle from a position is

odelled as a decreasing function of density ρ( x, t ): 

 (τ, ρ) = 

μ(τ ) 

1 + Aρ(x, t) 
(6) 

hich describes the phenomenon of con-specific attraction: the

ate at which individual molecules or particles of drug emigrate

rom the point x is reduced due to the presence of many other

on-specifics. The rate parameter μ( τ ) is a decreasing function of

he residence time: 

(τ ) = 

μ0 

τ0 + τ
(7) 

here μ0 and τ 0 are positive parameters. This particular choice

f the rate has been motivated by non-Markovian crowding: the

onger the particles stay in a particular site, the smaller the escape

robability to another site (e.g. fat). Although the space dependent

rder has been introduced in this paper since it can be further
mployed in order to investigate tissue trapping. Drug is trapped

ifferently depending on the heterogeneity of the tissue. However,

his is not the scope of this paper. 

. Revisited FDE PK model 

It has been suggested that instead of combining power law and

xponential functions to account for anomalous kinetics, it is more

fficient to use the Mittag–Leffler function [27] . This function has

he capability to follow the stretched exponential for small times

nd the power function for long times, thus it is appropriate for

haracterizing both the short and the long time scales of drug con-

entration profiles. 

A classical two-compartmental model is given by the following

DEs: 

dA 1 (t) 

dt 
= − k 12 A 1 (t) + k 21 A 2 (t) − k 10 A 1 (t) 

dA 2 (t) 

dt 
= k 12 A 1 (t) − k 21 A 2 (t) − k 20 A 2 (t) (8) 

he correct fractionalisation of Eq. (8) maintaining mass balance, is

iven by: 

dA 1 (t) 

dt 
= −k 12 

C 
0 D 

1 −α
t A 1 (t) + k 21 

C 
0 D 

1 −β
t A 2 (t) − k 10 

C 
0 D 

1 −γ
t A 1 (t) 

dA 2 (t) 

dt 
= k 12 

C 
0 D 

1 −α
t A 1 (t) − k 21 

C 
0 D 

1 −β
t A 2 (t) − k 20 

C 
0 D 

1 −δ
t A 2 (t) (9) 

ith k ij rate constants and initial conditions A 1 (0) = dose, A 2 (0) =
 which account for bolus injection and no initial amount in pe-

ipheral compartment. Here, the fractional order of the Caputo

ractional derivative represents the heterogeneity of the diffusion

ynamics [33] . 

Take for instance the two-compartmental PK model depicted in

ig. 1 c. Clearance and diffusion from compartment one to compart-

ent 2 is considered as a classical (ODE) whereas diffusion com-

artment two to compartment one is fractional (FDE), with α < 1

o account for deep tissue trapping of the drug. 

The model can be described by the following set of equations: 

dA 1 (t) 

dt 
= − (k 12 + k 10 ) A 1 (t) + k 21 

C 
0 D 

1 −α
t A 2 (t) 

dA 2 (t) 

dt 
= k 12 A 1 (t) − k 21 

C 
0 D 

1 −α
t A 2 (t) (10) 

he model has been transformed to the Laplace domain and solved

or A 1 using a numerical inverse Laplace transform program in

atlab as described in [27] . The solution is given by: 

 1 (s ) = 

dose (s α + k 21 ) 

(s + k 12 + k 10 )(s α + k 21 ) − k 12 k 21 

(11) 

For values α < 1 the solution behaves essentially as a first or-

er system, i.e. two poles of which one is cancelled by a zero at
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Fig. 2. Frequency response of (11) for various values of α. 

Table 1 

Estimated model parameters used in simula- 

tion, with k the transfer rates between the com- 

partments and clearance rate, and V the volume 

of the central compartment. 

Parameter Value 

k 10 (days −1 ) 1 .49 

k 12 (days −1 ) 2 .95 

k 21 (days −α ) 0 .48 

α (-) (0 .5,1.5) 

dose/V (ng/ml) 4 .72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Identified model parameters used in simulation 

from (11) for a fixed dose of 4.7268 (ng/ml). 

Parameter Value 

k 10 (days −1 ) 1 .7 

k 12 (days −1 ) 2 .5 

k 21 (days −α ) 0 .6 

α (-) 1 .5 
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high frequencies. Suppose now that the values of α may increase

above 1. The Bode plot of the transfer function is given in Fig. 2 for

various values of α, simulated with parameters as in Table 1 . 

From an engineering point of view, this non-rational transfer

function changes dynamic behaviour from a first order to a second

order system. In order to verify the time response of these transfer

functions, it is necessary to use an inverse Laplace transform for

non-rational polynomial representations. A numerical algorithm in

Matlab has been proposed in [27] , and it is used to simulate the

results reported in this paper as well. The time domain simulations

are given in Fig. 3 . 

4. Illustrative example 

A dynamic concentration profile (see Fig. 3 ) for the drug Amio-

darone taken from [26] has been mimicked for simulation pur-

poses. The model from (11) has been identified to fit data which

poses characteristics observed in real concentration values re-

ported in literature. Of particular importance are the oscillatory dy-

namics which relate to recirculation effects as discussed above. 

It is well known that the amiodarone plasma concentration

does not converge towards a steady state following multiple dos-

ing because of its tendency to accumulate in deeper tissues. In

Fig. 3 the time evolution of drug concentration for various values

of α. It can be noticed that for values of α > 1 an oscillatory effect

is noticed. 

Using the nonlinear least squares algorithm in Matlab provided

by the function lsqnonlin the parameters have been identified

as in Table 2 . 

The potential of increasing α > 1 is observed in capturing pos-

sible variations in the concentration profiles, when compared to
he result for α < 1 sketched in Fig. 4 . Of course, the model may

e further tuned on real data profiles. It should be also noted that

he amount of variability as a function of time differs from one

atient to another, hence the model parameters could be fit in an

ndividualised PK model framework. 

The model with the solution given in (11) has some limitations

n capturing all oscillatory dynamic profiles. This is due to the fact

hat only two compartments have been used, without recirculation,

nd without taking into account heterogeneity in the tissue. The

istributed parameter compartmental models may potentially be

mployed to circumvent this limitation. 

Higher order transfer functions may also be introduced, result-

ng in added dynamic complexity. However, stability must be en-

ured since non-rational transfer functions obey different stability

ules that those from classical system theory [34] . 

To investigate the behaviour noticed in Fig. 3 we have employed

 discretization method in order to approximate the high order

ransfer function with a first order plus dead time (FODT) trans-

er function. Literature offers several methods for approximating

uch non-rational continuous time transfer functions, through var-

ous steps. The one proposed in this work is based on four steps,

eading to a low order, stable, discrete time rational approximation

f any general fractional order system. The details have been out-

ined in [35] , with various examples to illustrate the ability of the

ethod. 

In short, the steps are as follows. 

• Step 1: discretize the FODT using a generating function. 

This function has been proposed as an interpolation between

uler and Tustin discretisation rules: 

 (z −1 ) = 

1 + a 

T 

1 − z −1 

1 + az −1 
(12)
s 
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Fig. 3. Time domain behaviour of the transfer function from (11) for various values of α. 

Fig. 4. Variations obtained with sub- and supra- unitary values of α. 
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ith the weighting parameter a ∈ [0 ÷1] and T s the sampling pe-

iod, with special cases for a = 0 (Euler discretization) and for

 = 1 (Tustin discretization). 

• Step 2: calculate the frequency response of the discrete-time

fractional order system from FODT. 

This approximation is done in a pre-determined frequency

nterval, of equally spaced frequency points, around a pre-

etermined frequency ω, e.g. the critical frequency ω c . The fre-

uencies below the critical frequency are more important for the

rediction quality of the time response of the obtained model than

requencies above ω c . 

• Step 3: calculate the impulse response of the discrete-time frac-

tional order system. 

This step employs the inverse Fast Fourier Transform (FFT),

hich converts the previously computed frequency domain re-

ponse into a time domain response. 

• Step 4: determine a rational discrete time transfer function that

produces a similar impulse response as that obtained from the
inverse FFT. e  
The result is the something in the form 

 (z −1 ) = 

c 0 + c 1 z 
−1 + . . . + c N z 

−N 

d 0 + d 1 z −1 + . . . + d N z −N 
(13) 

here N is the desired order of approximation. All tuning parame-

ers in these steps are discussed in detail in [35] . 

The conclusions taken after employing this method is that the

inflexion point” at about t = 2 are due to the zero in the transfer

unction. This is a property of the Mittag–Leffler function which

equires a zero. The effect of this zero can be seen as the clearance

ate (which has faster dynamics than the diffusion). 

. Discussion and perspectives 

In this paper we revisited the existing compartmental mod-

lling approaches and extended their usefulness by employing

merging tools from fractional calculus. Undoubtedly, the fractional

inetics approach outperforms the classical ODE models while

aintaining the link to physiological phenomena. It is worth men-

ioning that the assumption of a homogeneous compartment rep-

esentation is no longer limiting in view of modelling objectives.

nstead, tissue trapping and heterogeneous resident times may be

aken into account by using distributed compartmental models

ith various diffusion rates. The combination of classical PK mod-

ls and with fractional PK models is then the natural next step
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in the quest to improve their ability to mimic complex observed

physiological phenomena. 

Naturally, tissue porosity, molecular binding and permeability

vary within the organ, within the system and within the assumed

compartment. Taking tissue specificity into account when mod-

elling PK dynamic profiles may lead to increased model complex-

ity. A trade off between the usefulness and computational effi-

ciency of such models must be made when evaluating the model

objectives. If prediction for treatment optimisation is envisaged,

then one may include as many details as possible to account for a

personalised healthcare plan. If mere evaluation of dosing profiles

and observational studies are involved, tissue specificity may be

limited to the strictly necessary number of details (e.g. Occam’s Ra-

zor approach). Obviously, large population data sets will be neces-

sary to provide some reference baseline values for initial start-up.

However, if data is available, data driven modelling/identification

may be performed and model parameters tuned to fit the speci-

ficity of the case. 

Applications of augmented PK models with FDEs are numer-

ous and not limited in the number of turns. One may freely con-

sider their application to modelling any drug PK dynamics. Mul-

tiples types of dosing intake may be assumed, either as a single

type, or as combinations hereof: single dose, bolus, multiple dose,

continuous infusion. When using FDEs in PK models, care must be

taken for intake profiles may lead to drug accumulation and possi-

bly over-dosing in some time intervals. Linear or power-law dosing

profiles may be investigated to optimally use the dynamic model

properties. 

As such, time FDEs have been considered hitherto. However,

tissue heterogeneity is also structural, geometric, and not only

present in dynamic fluctuations. It may be worth considering in-

troducing a time-space mathematical formulation (e.g. by employ-

ing fractional order space derivatives) to account for drug intake

whereas time and location may be specified. This is of great im-

portance in pathology cases, where changes in tissue structure and

morphology affects directly the dynamic profiles of drug diffusion,

permeability and molecular binding. Specific structural changes

with disease may also reveal various paths of deep tissue trapping

of drug and latency nodes which could explain effects observed in

long-tailed observations. 
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